Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2137.60 on revision:2137

* Page found: Wellenoptik und Beugung (eq math.2137.60)

(force rerendering)

Occurrences on the following pages:

Hash: cf24432b5d60a3acdf11b7e4d0a2cad3

TeX (original user input):

\begin{align}
& \Rightarrow \Phi \left( \bar{r}\acute{\ } \right)=C\int_{-d/2}^{d/2}{d{{s}_{1}}}{{e}^{ik\alpha {{s}_{1}}}} \\
& \alpha :=\sin {{\vartheta }_{0}} \\
& \bar{\alpha }\bar{s}={{s}_{1}}\sin {{\vartheta }_{0}} \\
& \Rightarrow \Phi \left( \bar{r}\acute{\ } \right)=\frac{C}{ik\alpha }\left( {{e}^{ik\alpha \frac{d}{2}}}-{{e}^{-ik\alpha \frac{d}{2}}} \right) \\
& \Phi \left( \bar{r}\acute{\ } \right)=Cd\frac{\sin \left( k\alpha \frac{d}{2} \right)}{k\alpha \frac{d}{2}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow \Phi \left({\bar {r}}{\acute {\ }}\right)=C\int _{-d/2}^{d/2}{d{{s}_{1}}}{{e}^{ik\alpha {{s}_{1}}}}\\&\alpha :=\sin {{\vartheta }_{0}}\\&{\bar {\alpha }}{\bar {s}}={{s}_{1}}\sin {{\vartheta }_{0}}\\&\Rightarrow \Phi \left({\bar {r}}{\acute {\ }}\right)={\frac {C}{ik\alpha }}\left({{e}^{ik\alpha {\frac {d}{2}}}}-{{e}^{-ik\alpha {\frac {d}{2}}}}\right)\\&\Phi \left({\bar {r}}{\acute {\ }}\right)=Cd{\frac {\sin \left(k\alpha {\frac {d}{2}}\right)}{k\alpha {\frac {d}{2}}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.612 KB / 630 B) :

Φ(r¯´)=Cd/2d/2ds1eikαs1α:=sinϑ0α¯s¯=s1sinϑ0Φ(r¯´)=Cikα(eikαd2eikαd2)Φ(r¯´)=Cdsin(kαd2)kαd2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>C</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mo>/</mo><mn>2</mn></mrow></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mi>s</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>&#x03B1;</mi><msub><mi>s</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03B1;</mi><mi>:</mi><mo>=</mo><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><msub><mi>s</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>sin</mi><mo>&#x2061;</mo><msub><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>C</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>&#x03B1;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>k</mi><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>C</mi><mi>d</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Wellenoptik und Beugung page

Identifiers

  • Φ
  • r¯
  • ´
  • C
  • d
  • d
  • s1
  • e
  • i
  • k
  • α
  • s1
  • α
  • ϑ0
  • α¯
  • s¯
  • s1
  • ϑ0
  • Φ
  • r¯
  • ´
  • C
  • i
  • k
  • α
  • e
  • i
  • k
  • α
  • d
  • e
  • i
  • k
  • α
  • d
  • Φ
  • r¯
  • ´
  • C
  • d
  • k
  • α
  • d
  • k
  • α
  • d

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results