Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.2137.28 on revision:2137

* Page found: Wellenoptik und Beugung (eq math.2137.28)

(force rerendering)

Occurrences on the following pages:

Hash: 022477f631f403f3aca592c42b27eb25

TeX (original user input):

\begin{align}
& \Phi \left( \bar{r}\acute{\ },t \right)=\frac{1}{4\pi }\int_{\partial V}^{{}}{d{{{\bar{f}}}_{R}}}\left[ \frac{{{e}^{ikR}}}{R}{{\nabla }_{r}}\Phi \left( {\bar{r}} \right)-\Phi \left( {\bar{r}} \right){{\nabla }_{r}}\frac{{{e}^{ikR}}}{R} \right] \\
& {{\nabla }_{r}}\frac{{{e}^{ikR}}}{R}=\frac{{{e}^{ikR}}}{R}\left( ik-\frac{1}{R} \right)\frac{\bar{r}-\bar{r}\acute{\ }}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Phi \left({\bar {r}}{\acute {\ }},t\right)={\frac {1}{4\pi }}\int _{\partial V}^{}{d{{\bar {f}}_{R}}}\left[{\frac {{e}^{ikR}}{R}}{{\nabla }_{r}}\Phi \left({\bar {r}}\right)-\Phi \left({\bar {r}}\right){{\nabla }_{r}}{\frac {{e}^{ikR}}{R}}\right]\\&{{\nabla }_{r}}{\frac {{e}^{ikR}}{R}}={\frac {{e}^{ikR}}{R}}\left(ik-{\frac {1}{R}}\right){\frac {{\bar {r}}-{\bar {r}}{\acute {\ }}}{\left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.821 KB / 609 B) :

Φ(r¯´,t)=14πVdf¯R[eikRRrΦ(r¯)Φ(r¯)reikRR]reikRR=eikRR(ik1R)r¯r¯´|r¯r¯´|
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>f</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></msub></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></mfrac></mrow><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>i</mi><mi>k</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>R</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Wellenoptik und Beugung page

Identifiers

  • Φ
  • r¯
  • ´
  • t
  • π
  • V
  • f¯R
  • e
  • i
  • k
  • R
  • R
  • r
  • Φ
  • r¯
  • Φ
  • r¯
  • r
  • e
  • i
  • k
  • R
  • R
  • r
  • e
  • i
  • k
  • R
  • R
  • e
  • i
  • k
  • R
  • R
  • i
  • k
  • R
  • r¯
  • r¯
  • ´
  • r¯
  • r¯
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results