Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2095.26 on revision:2095
* Page found: Magnetostatische Feldgleichungen (eq math.2095.26)
(force rerendering)Occurrences on the following pages:
Hash: 33173fbede8b61f7347892759023e0a5
TeX (original user input):
\begin{align}
& \bar{A}\acute{\ }(\bar{r})\to \bar{A}+\nabla \Psi \\
& \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A}+\nabla \times \nabla \Psi \\
& \nabla \times \nabla \Psi =0\Rightarrow \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A} \\
& \Rightarrow \nabla \times \left( \nabla \times \bar{A}\acute{\ }(\bar{r}) \right)=\nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j} \\
& \nabla \times \left( \nabla \times \bar{A}\acute{\ }(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}\acute{\ }(\bar{r}) \right)-\Delta \bar{A}\acute{\ }(\bar{r}) \\
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {A}}{\acute {\ }}({\bar {r}})\to {\bar {A}}+\nabla \Psi \\&\nabla \times {\bar {A}}{\acute {\ }}({\bar {r}})\to \nabla \times {\bar {A}}+\nabla \times \nabla \Psi \\&\nabla \times \nabla \Psi =0\Rightarrow \nabla \times {\bar {A}}{\acute {\ }}({\bar {r}})\to \nabla \times {\bar {A}}\\&\Rightarrow \nabla \times \left(\nabla \times {\bar {A}}{\acute {\ }}({\bar {r}})\right)=\nabla \times {\bar {B}}({\bar {r}})={{\mu }_{0}}{\bar {j}}\\&\nabla \times \left(\nabla \times {\bar {A}}{\acute {\ }}({\bar {r}})\right)=\nabla \left(\nabla \cdot {\bar {A}}{\acute {\ }}({\bar {r}})\right)-\Delta {\bar {A}}{\acute {\ }}({\bar {r}})\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.735 KB / 553 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo accent="false">→</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo accent="false">→</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>×</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>=</mo><mn>0</mn><mo>⇒</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo accent="false">→</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><msub><mi>μ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>j</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Magnetostatische Feldgleichungen page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results