Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.2005.0 on revision:2005
* Page found: Drehimpuls und Bewegungsgleichungen (eq math.2005.0)
(force rerendering)Occurrences on the following pages:
Hash: 75b38fb04946de0c2672290f32ecba7e
TeX (original user input):
\begin{align}
& \bar{l}=\sum\limits_{i=1}^{n}{{}}{{m}_{i}}{{{\bar{r}}}_{i}}\times {{{\dot{\bar{r}}}}_{i}}=\sum\limits_{i=1}^{n}{{}}{{m}_{i}}\left( {{{\bar{r}}}_{S}}+{{{\bar{x}}}^{(i)}} \right)\times \left( \bar{V}+\bar{\omega }\times {{{\bar{x}}}^{(i)}} \right) \\
& \bar{l}=\sum\limits_{i=1}^{n}{{}}{{m}_{i}}\left( {{{\bar{r}}}_{S}}\times \bar{V} \right)+\sum\limits_{i=1}^{n}{{}}{{m}_{i}}{{{\bar{x}}}^{(i)}}\times \bar{V}+{{{\bar{r}}}_{S}}\times \left( \bar{\omega }\times \sum\limits_{i}{{{m}_{i}}}{{{\bar{x}}}^{(i)}} \right)+\sum\limits_{i}{{{m}_{i}}}{{{\bar{x}}}^{(i)}}\times \left( \bar{\omega }\times {{{\bar{x}}}^{(i)}} \right) \\
& \sum\limits_{i=1}^{n}{{}}{{m}_{i}}{{{\bar{x}}}^{(i)}}\times \bar{V}=\sum\limits_{i=1}^{n}{{}}{{m}_{i}}\left( {{{\bar{x}}}^{(i)}} \right)=0 \\
& \bar{l}=\sum\limits_{i=1}^{n}{{}}{{m}_{i}}\left( {{{\bar{r}}}_{S}}\times \bar{V} \right)+\sum\limits_{i}{{{m}_{i}}}{{{\bar{x}}}^{(i)}}\times \left( \bar{\omega }\times {{{\bar{x}}}^{(i)}} \right)=M\left( {{{\bar{r}}}_{S}}\times \bar{V} \right)+\sum\limits_{i}{{{m}_{i}}}{{{\bar{x}}}^{(i)}}\times \left( \bar{\omega }\times {{{\bar{x}}}^{(i)}} \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {l}}=\sum \limits _{i=1}^{n}{}{{m}_{i}}{{\bar {r}}_{i}}\times {{\dot {\bar {r}}}_{i}}=\sum \limits _{i=1}^{n}{}{{m}_{i}}\left({{\bar {r}}_{S}}+{{\bar {x}}^{(i)}}\right)\times \left({\bar {V}}+{\bar {\omega }}\times {{\bar {x}}^{(i)}}\right)\\&{\bar {l}}=\sum \limits _{i=1}^{n}{}{{m}_{i}}\left({{\bar {r}}_{S}}\times {\bar {V}}\right)+\sum \limits _{i=1}^{n}{}{{m}_{i}}{{\bar {x}}^{(i)}}\times {\bar {V}}+{{\bar {r}}_{S}}\times \left({\bar {\omega }}\times \sum \limits _{i}{{m}_{i}}{{\bar {x}}^{(i)}}\right)+\sum \limits _{i}{{m}_{i}}{{\bar {x}}^{(i)}}\times \left({\bar {\omega }}\times {{\bar {x}}^{(i)}}\right)\\&\sum \limits _{i=1}^{n}{}{{m}_{i}}{{\bar {x}}^{(i)}}\times {\bar {V}}=\sum \limits _{i=1}^{n}{}{{m}_{i}}\left({{\bar {x}}^{(i)}}\right)=0\\&{\bar {l}}=\sum \limits _{i=1}^{n}{}{{m}_{i}}\left({{\bar {r}}_{S}}\times {\bar {V}}\right)+\sum \limits _{i}{{m}_{i}}{{\bar {x}}^{(i)}}\times \left({\bar {\omega }}\times {{\bar {x}}^{(i)}}\right)=M\left({{\bar {r}}_{S}}\times {\bar {V}}\right)+\sum \limits _{i}{{m}_{i}}{{\bar {x}}^{(i)}}\times \left({\bar {\omega }}\times {{\bar {x}}^{(i)}}\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (10.584 KB / 632 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>l</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>×</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ω</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>l</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ω</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ω</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>l</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></munderover><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ω</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>M</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></munder><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo>×</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ω</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Drehimpuls und Bewegungsgleichungen page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results