Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1989.32 on revision:1989
* Page found: Hamilton-Jacobische Differenzialgleichung (eq math.1989.32)
(force rerendering)Occurrences on the following pages:
Hash: 32cbae6f774239257449a2d8767c7af4
TeX (original user input):
\begin{align}
& Q=\left( \frac{\partial S(q,P,t)}{\partial \alpha } \right)=-t+\frac{1}{\omega }\int{dq}{{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}^{-\frac{1}{2}}}=\beta \\
& Q=\beta =-t+\frac{1}{\omega }\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha \right|}} \right) \\
& \Rightarrow q=\frac{1}{\omega }\sqrt{\frac{2\alpha }{m}}\sin \left( \omega (t+\beta ) \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&Q=\left({\frac {\partial S(q,P,t)}{\partial \alpha }}\right)=-t+{\frac {1}{\omega }}\int {dq}{{\left({\frac {2\alpha }{m{{\omega }^{2}}}}-{{q}^{2}}\right)}^{-{\frac {1}{2}}}}=\beta \\&Q=\beta =-t+{\frac {1}{\omega }}\arcsin \left(q{\sqrt {\frac {m{{\omega }^{2}}}{2\left|\alpha \right|}}}\right)\\&\Rightarrow q={\frac {1}{\omega }}{\sqrt {\frac {2\alpha }{m}}}\sin \left(\omega (t+\beta )\right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (3.563 KB / 574 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>Q</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>S</mi><mo stretchy="false">(</mo><mi>q</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>α</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>−</mo><mi>t</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>ω</mi></mrow></mfrac></mrow><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>α</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>−</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></msup><mo>=</mo><mi>β</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>Q</mi><mo>=</mo><mi>β</mi><mo>=</mo><mo>−</mo><mi>t</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>ω</mi></mrow></mfrac></mrow><mi>arcsin</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>ω</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>α</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></mfrac></mrow></msqrt></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>q</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>ω</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>α</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow></msqrt></mrow><mi>sin</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ω</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>β</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Hamilton-Jacobische Differenzialgleichung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results