Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1989.32 on revision:1989

* Page found: Hamilton-Jacobische Differenzialgleichung (eq math.1989.32)

(force rerendering)

Occurrences on the following pages:

Hash: 32cbae6f774239257449a2d8767c7af4

TeX (original user input):

\begin{align}
  & Q=\left( \frac{\partial S(q,P,t)}{\partial \alpha } \right)=-t+\frac{1}{\omega }\int{dq}{{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}^{-\frac{1}{2}}}=\beta  \\
 & Q=\beta =-t+\frac{1}{\omega }\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \\
 & \Rightarrow q=\frac{1}{\omega }\sqrt{\frac{2\alpha }{m}}\sin \left( \omega (t+\beta ) \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&Q=\left({\frac {\partial S(q,P,t)}{\partial \alpha }}\right)=-t+{\frac {1}{\omega }}\int {dq}{{\left({\frac {2\alpha }{m{{\omega }^{2}}}}-{{q}^{2}}\right)}^{-{\frac {1}{2}}}}=\beta \\&Q=\beta =-t+{\frac {1}{\omega }}\arcsin \left(q{\sqrt {\frac {m{{\omega }^{2}}}{2\left|\alpha \right|}}}\right)\\&\Rightarrow q={\frac {1}{\omega }}{\sqrt {\frac {2\alpha }{m}}}\sin \left(\omega (t+\beta )\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.563 KB / 574 B) :

Q=(S(q,P,t)α)=t+1ωdq(2αmω2q2)12=βQ=β=t+1ωarcsin(qmω22|α|)q=1ω2αmsin(ω(t+β))
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>Q</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>S</mi><mo stretchy="false">(</mo><mi>q</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03B1;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>t</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow></mfrac></mrow><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></msup><mo>=</mo><mi>&#x03B2;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>Q</mi><mo>=</mo><mi>&#x03B2;</mi><mo>=</mo><mo>&#x2212;</mo><mi>t</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow></mfrac></mrow><mi>arcsin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></mfrac></mrow></msqrt></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>q</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow></msqrt></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>&#x03B2;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hamilton-Jacobische Differenzialgleichung page

Identifiers

  • Q
  • S
  • q
  • P
  • t
  • α
  • t
  • ω
  • q
  • α
  • m
  • ω
  • q
  • β
  • Q
  • β
  • t
  • ω
  • q
  • m
  • ω
  • α
  • q
  • ω
  • α
  • m
  • ω
  • t
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results