Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1989.31 on revision:1989

* Page found: Hamilton-Jacobische Differenzialgleichung (eq math.1989.31)

(force rerendering)

Occurrences on the following pages:

Hash: 440020c8ee3bfbbd6f188ccb790941f7

TeX (original user input):

S(q,\alpha ,t)=m\omega \int{dq}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}-\alpha t=-\alpha t+m\omega \left[ \frac{q}{2}\sqrt{\left( \frac{2\alpha }{m{{\omega }^{2}}}-{{q}^{2}} \right)}+\frac{\alpha }{m{{\omega }^{2}}}\arcsin \left( q\sqrt{\frac{m{{\omega }^{2}}}{2\left| \alpha  \right|}} \right) \right]

TeX (checked):

S(q,\alpha ,t)=m\omega \int {dq}{\sqrt {\left({\frac {2\alpha }{m{{\omega }^{2}}}}-{{q}^{2}}\right)}}-\alpha t=-\alpha t+m\omega \left[{\frac {q}{2}}{\sqrt {\left({\frac {2\alpha }{m{{\omega }^{2}}}}-{{q}^{2}}\right)}}+{\frac {\alpha }{m{{\omega }^{2}}}}\arcsin \left(q{\sqrt {\frac {m{{\omega }^{2}}}{2\left|\alpha \right|}}}\right)\right]

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.772 KB / 436 B) :

S(q,α,t)=mωdq(2αmω2q2)αt=αt+mω[q2(2αmω2q2)+αmω2arcsin(qmω22|α|)]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>S</mi><mo stretchy="false">(</mo><mi>q</mi><mo>,</mo><mi>&#x03B1;</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mi>&#x03C9;</mi><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></msqrt></mrow><mo>&#x2212;</mo><mi>&#x03B1;</mi><mi>t</mi><mo>=</mo><mo>&#x2212;</mo><mi>&#x03B1;</mi><mi>t</mi><mo>+</mo><mi>m</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>q</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03B1;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></msqrt></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi>arcsin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>q</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>&#x03B1;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></mfrac></mrow></msqrt></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hamilton-Jacobische Differenzialgleichung page

Identifiers

  • S
  • q
  • α
  • t
  • m
  • ω
  • q
  • α
  • m
  • ω
  • q
  • α
  • t
  • α
  • t
  • m
  • ω
  • q
  • α
  • m
  • ω
  • q
  • α
  • m
  • ω
  • q
  • m
  • ω
  • α

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results