Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1970.13 on revision:1970
* Page found: Der Satz von Liouville (eq math.1970.13)
(force rerendering)Occurrences on the following pages:
Hash: 0749d75494648eb3e9dbae7b90aa134a
TeX (original user input):
\begin{align}
& \det \left( D{{\Phi }_{t,{{t}_{0}}}} \right)=\left| \frac{\partial {{\Phi }^{i}}_{t,{{t}_{0}}}({{{\bar{x}}}_{0}})}{\partial {{x}_{0}}^{k}} \right|=1+(t-{{t}_{0}})\sum\limits_{i=1}^{2f}{{}}\frac{\partial {{{\bar{F}}}^{i}}({{{\bar{x}}}_{0}},t)}{\partial {{x}_{0}}^{i}}(t-{{t}_{0}})+O({{(t-{{t}_{0}})}^{2}}) \\
& \sum\limits_{i=1}^{2f}{{}}\frac{\partial {{{\bar{F}}}^{i}}({{{\bar{x}}}_{0}},t)}{\partial {{x}_{0}}^{i}}=div\bar{F}=\frac{\partial }{\partial q}\frac{\partial H}{\partial p}-\frac{\partial }{\partial p}\frac{\partial H}{\partial q}=0 \\
\end{align}
TeX (checked):
{\begin{aligned}&\det \left(D{{\Phi }_{t,{{t}_{0}}}}\right)=\left|{\frac {\partial {{\Phi }^{i}}_{t,{{t}_{0}}}({{\bar {x}}_{0}})}{\partial {{x}_{0}}^{k}}}\right|=1+(t-{{t}_{0}})\sum \limits _{i=1}^{2f}{}{\frac {\partial {{\bar {F}}^{i}}({{\bar {x}}_{0}},t)}{\partial {{x}_{0}}^{i}}}(t-{{t}_{0}})+O({{(t-{{t}_{0}})}^{2}})\\&\sum \limits _{i=1}^{2f}{}{\frac {\partial {{\bar {F}}^{i}}({{\bar {x}}_{0}},t)}{\partial {{x}_{0}}^{i}}}=div{\bar {F}}={\frac {\partial }{\partial q}}{\frac {\partial H}{\partial p}}-{\frac {\partial }{\partial p}}{\frac {\partial H}{\partial q}}=0\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.568 KB / 682 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>det</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>D</mi><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><msup><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>p</mi></mrow></mrow></mfrac></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>p</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der Satz von Liouville page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results