Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1970.13 on revision:1970

* Page found: Der Satz von Liouville (eq math.1970.13)

(force rerendering)

Occurrences on the following pages:

Hash: 0749d75494648eb3e9dbae7b90aa134a

TeX (original user input):

\begin{align}
  & \det \left( D{{\Phi }_{t,{{t}_{0}}}} \right)=\left| \frac{\partial {{\Phi }^{i}}_{t,{{t}_{0}}}({{{\bar{x}}}_{0}})}{\partial {{x}_{0}}^{k}} \right|=1+(t-{{t}_{0}})\sum\limits_{i=1}^{2f}{{}}\frac{\partial {{{\bar{F}}}^{i}}({{{\bar{x}}}_{0}},t)}{\partial {{x}_{0}}^{i}}(t-{{t}_{0}})+O({{(t-{{t}_{0}})}^{2}}) \\ 
 & \sum\limits_{i=1}^{2f}{{}}\frac{\partial {{{\bar{F}}}^{i}}({{{\bar{x}}}_{0}},t)}{\partial {{x}_{0}}^{i}}=div\bar{F}=\frac{\partial }{\partial q}\frac{\partial H}{\partial p}-\frac{\partial }{\partial p}\frac{\partial H}{\partial q}=0 \\ 
\end{align}

TeX (checked):

{\begin{aligned}&\det \left(D{{\Phi }_{t,{{t}_{0}}}}\right)=\left|{\frac {\partial {{\Phi }^{i}}_{t,{{t}_{0}}}({{\bar {x}}_{0}})}{\partial {{x}_{0}}^{k}}}\right|=1+(t-{{t}_{0}})\sum \limits _{i=1}^{2f}{}{\frac {\partial {{\bar {F}}^{i}}({{\bar {x}}_{0}},t)}{\partial {{x}_{0}}^{i}}}(t-{{t}_{0}})+O({{(t-{{t}_{0}})}^{2}})\\&\sum \limits _{i=1}^{2f}{}{\frac {\partial {{\bar {F}}^{i}}({{\bar {x}}_{0}},t)}{\partial {{x}_{0}}^{i}}}=div{\bar {F}}={\frac {\partial }{\partial q}}{\frac {\partial H}{\partial p}}-{\frac {\partial }{\partial p}}{\frac {\partial H}{\partial q}}=0\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.568 KB / 682 B) :

det(DΦt,t0)=|Φit,t0(x¯0)x0k|=1+(tt0)i=12fF¯i(x¯0,t)x0i(tt0)+O((tt0)2)i=12fF¯i(x¯0,t)x0i=divF¯=qHppHq=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>det</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>D</mi><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><msup><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>&#x2212;</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>p</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>H</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>q</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der Satz von Liouville page

Identifiers

  • D
  • Φt,t0
  • Φ
  • i
  • t
  • t0
  • x¯0
  • x0
  • k
  • t
  • t0
  • i
  • f
  • F¯
  • i
  • x¯0
  • t
  • x0
  • i
  • t
  • t0
  • O
  • t
  • t0
  • i
  • f
  • F¯
  • i
  • x¯0
  • t
  • x0
  • i
  • d
  • i
  • v
  • F¯
  • q
  • H
  • p
  • p
  • H
  • q

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results