Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1957.58 on revision:1957

* Page found: Kanonische Transformationen (eq math.1957.58)

(force rerendering)

Occurrences on the following pages:

Hash: 6af0eeff2e6e64c689890e4d156b5c52

TeX (original user input):

\frac{d}{dt}{{M}_{1}}=\frac{d}{dt}\left( {{M}_{2}}(\bar{q}(t),\bar{P}(t),t)-\sum\limits_{k}{{{P}_{k}}{{Q}_{k}}} \right)=\sum\limits_{k=1}^{f}{{}}\left( \frac{\partial {{M}_{2}}}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial {{M}_{2}}}{\partial {{P}_{k}}}{{{\dot{P}}}_{k}}-{{{\dot{P}}}_{k}}{{Q}_{k}}-{{P}_{k}}{{{\dot{Q}}}_{k}} \right)+\frac{\partial {{M}_{2}}}{\partial t}

TeX (checked):

{\frac {d}{dt}}{{M}_{1}}={\frac {d}{dt}}\left({{M}_{2}}({\bar {q}}(t),{\bar {P}}(t),t)-\sum \limits _{k}{{{P}_{k}}{{Q}_{k}}}\right)=\sum \limits _{k=1}^{f}{}\left({\frac {\partial {{M}_{2}}}{\partial {{q}_{k}}}}{{\dot {q}}_{k}}+{\frac {\partial {{M}_{2}}}{\partial {{P}_{k}}}}{{\dot {P}}_{k}}-{{\dot {P}}_{k}}{{Q}_{k}}-{{P}_{k}}{{\dot {Q}}_{k}}\right)+{\frac {\partial {{M}_{2}}}{\partial t}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.739 KB / 481 B) :

ddtM1=ddt(M2(q¯(t),P¯(t),t)kPkQk)=k=1f(M2qkq˙k+M2PkP˙kP˙kQkPkQ˙k)+M2t
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="ORD"><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>f</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>P</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kanonische Transformationen page

Identifiers

  • d
  • d
  • t
  • M1
  • d
  • d
  • t
  • M2
  • q¯
  • t
  • P¯
  • t
  • t
  • k
  • Pk
  • Qk
  • k
  • f
  • M2
  • qk
  • q˙k
  • M2
  • Pk
  • P˙k
  • P˙k
  • Qk
  • Pk
  • Q˙k
  • M2
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results