Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1957.49 on revision:1957

* Page found: Kanonische Transformationen (eq math.1957.49)

(force rerendering)

Occurrences on the following pages:

Hash: e58609faaf126df457e8bcc11c321cb1

TeX (original user input):

\begin{align}
  & \delta \left\{ {{M}_{1}}(q({{t}_{2}}),Q({{t}_{2}}),{{t}_{2}})-{{M}_{1}}(q({{t}_{1}}),Q({{t}_{1}}),{{t}_{1}}) \right\}=\sum\limits_{k}{\left( \left. \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}\delta {{q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}+\left. \frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}} \right)} \\ 
 & mit\left. \quad \frac{\partial {{M}_{1}}}{\partial {{q}_{k}}}\delta {{q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}=0\quad und\quad \left. \frac{\partial {{M}_{1}}}{\partial {{Q}_{k}}}\delta {{Q}_{k}} \right|_{{{t}_{1}}}^{{{t}_{2}}}\ne 0 \\ 
\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.12 KB / 591 B) :

δ{M1(q(t2),Q(t2),t2)M1(q(t1),Q(t1),t1)}=k(M1qkδqk|t1t2+M1QkδQk|t1t2)mitM1qkδqk|t1t2=0undM1QkδQk|t1t20
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><mi>Q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo>&#x2212;</mo><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><mi>Q</mi><mo stretchy="false">(</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msubsup><mo>+</mo><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msubsup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>m</mi><mi>i</mi><mi>t</mi><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mspace width="1em"></mspace><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msubsup><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>u</mi><mi>n</mi><mi>d</mi><mspace width="1em"></mspace><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mi>&#x03B4;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msubsup><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kanonische Transformationen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results