Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1957.42 on revision:1957

* Page found: Kanonische Transformationen (eq math.1957.42)

(force rerendering)

Occurrences on the following pages:

Hash: fd2a5be16f43e45e0d802529695636d4

TeX (original user input):

\begin{align}
  & {{p}_{k}}=\frac{\partial {{M}_{1}}(\bar{q},\bar{Q},t)}{\partial {{q}_{k}}}\Rightarrow {{Q}_{j}}(\bar{q},\bar{p},t) \\ 
 & Bedingung:\det \left( \frac{{{\partial }^{2}}{{M}_{1}}}{\partial {{q}_{k}}\partial {{Q}_{j}}} \right)\ne 0 \\ 
 & {{P}_{k}}=-\frac{\partial {{M}_{1}}(\bar{q},\bar{Q},t)}{\partial {{Q}_{k}}}=-\frac{\partial {{M}_{1}}(\bar{q},\bar{Q}(\bar{q},\bar{p},t),t)}{\partial {{Q}_{k}}}={{P}_{k}}(\bar{q},\bar{p},t) \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{p}_{k}}={\frac {\partial {{M}_{1}}({\bar {q}},{\bar {Q}},t)}{\partial {{q}_{k}}}}\Rightarrow {{Q}_{j}}({\bar {q}},{\bar {p}},t)\\&Bedingung:\det \left({\frac {{{\partial }^{2}}{{M}_{1}}}{\partial {{q}_{k}}\partial {{Q}_{j}}}}\right)\neq 0\\&{{P}_{k}}=-{\frac {\partial {{M}_{1}}({\bar {q}},{\bar {Q}},t)}{\partial {{Q}_{k}}}}=-{\frac {\partial {{M}_{1}}({\bar {q}},{\bar {Q}}({\bar {q}},{\bar {p}},t),t)}{\partial {{Q}_{k}}}}={{P}_{k}}({\bar {q}},{\bar {p}},t)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.519 KB / 540 B) :

pk=M1(q¯,Q¯,t)qkQj(q¯,p¯,t)Bedingung:det(2M1qkQj)0Pk=M1(q¯,Q¯,t)Qk=M1(q¯,Q¯(q¯,p¯,t),t)Qk=Pk(q¯,p¯,t)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>&#x21D2;</mo><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>B</mi><mi>e</mi><mi>d</mi><mi>i</mi><mi>n</mi><mi>g</mi><mi>u</mi><mi>n</mi><mi>g</mi><mi>:</mi><mi>det</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2260;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>M</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>Q</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msub><mi>Q</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kanonische Transformationen page

Identifiers

  • pk
  • M1
  • q¯
  • Q¯
  • t
  • qk
  • Qj
  • q¯
  • p¯
  • t
  • B
  • e
  • d
  • i
  • n
  • g
  • u
  • n
  • g
  • M1
  • qk
  • Qj
  • Pk
  • M1
  • q¯
  • Q¯
  • t
  • Qk
  • M1
  • q¯
  • Q¯
  • q¯
  • p¯
  • t
  • t
  • Qk
  • Pk
  • q¯
  • p¯
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results