Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1931.39 on revision:1931
* Page found: Räumliche Isotropie (eq math.1931.39)
(force rerendering)Occurrences on the following pages:
Hash: 9215eba51184eab7d8158f0d7b552e2b
TeX (original user input):
\begin{align}
& \left( \begin{matrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi \\
\end{matrix} \right)=\bar{\bar{1}}\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n \right)!}{{\phi }^{2n}}-\bar{\bar{M}}}\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{\phi }^{2n+1}}} \\
& =\sum\limits_{n=0}^{\infty }{\frac{1}{\left( 2n \right)!}{{{\bar{\bar{M}}}}^{2n}}{{\phi }^{2n}}-\bar{\bar{M}}}\sum\limits_{n=0}^{\infty }{\frac{1}{\left( 2n+1 \right)!}{{{\bar{\bar{M}}}}^{2n+1}}{{\phi }^{2n+1}}} \\
& =\exp \left( -\bar{\bar{M}}\phi \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&\left({\begin{matrix}\cos \phi &\sin \phi \\-\sin \phi &\cos \phi \\\end{matrix}}\right)={\bar {\bar {1}}}\sum \limits _{n=0}^{\infty }{{\frac {{\left(-1\right)}^{n}}{\left(2n\right)!}}{{\phi }^{2n}}-{\bar {\bar {M}}}}\sum \limits _{n=0}^{\infty }{{\frac {{\left(-1\right)}^{n}}{\left(2n+1\right)!}}{{\phi }^{2n+1}}}\\&=\sum \limits _{n=0}^{\infty }{{\frac {1}{\left(2n\right)!}}{{\bar {\bar {M}}}^{2n}}{{\phi }^{2n}}-{\bar {\bar {M}}}}\sum \limits _{n=0}^{\infty }{{\frac {1}{\left(2n+1\right)!}}{{\bar {\bar {M}}}^{2n+1}}{{\phi }^{2n+1}}}\\&=\exp \left(-{\bar {\bar {M}}}\phi \right)\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.947 KB / 601 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi></mtd><mtd><mi>sin</mi><mo>⁡</mo><mi>ϕ</mi></mtd></mtr><mtr><mtd><mo>−</mo><mi>sin</mi><mo>⁡</mo><mi>ϕ</mi></mtd><mtd><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mn>1</mn><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow></mrow><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><msup><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow></mrow><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><msup><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>exp</mi><mo>⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mi>ϕ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Räumliche Isotropie page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results