Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1931.39 on revision:1931

* Page found: Räumliche Isotropie (eq math.1931.39)

(force rerendering)

Occurrences on the following pages:

Hash: 9215eba51184eab7d8158f0d7b552e2b

TeX (original user input):

\begin{align}
  & \left( \begin{matrix}
   \cos \phi  & \sin \phi   \\
   -\sin \phi  & \cos \phi   \\
\end{matrix} \right)=\bar{\bar{1}}\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n \right)!}{{\phi }^{2n}}-\bar{\bar{M}}}\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{\phi }^{2n+1}}} \\
 & =\sum\limits_{n=0}^{\infty }{\frac{1}{\left( 2n \right)!}{{{\bar{\bar{M}}}}^{2n}}{{\phi }^{2n}}-\bar{\bar{M}}}\sum\limits_{n=0}^{\infty }{\frac{1}{\left( 2n+1 \right)!}{{{\bar{\bar{M}}}}^{2n+1}}{{\phi }^{2n+1}}} \\
 & =\exp \left( -\bar{\bar{M}}\phi  \right) \\
\end{align}

TeX (checked):

{\begin{aligned}&\left({\begin{matrix}\cos \phi &\sin \phi \\-\sin \phi &\cos \phi \\\end{matrix}}\right)={\bar {\bar {1}}}\sum \limits _{n=0}^{\infty }{{\frac {{\left(-1\right)}^{n}}{\left(2n\right)!}}{{\phi }^{2n}}-{\bar {\bar {M}}}}\sum \limits _{n=0}^{\infty }{{\frac {{\left(-1\right)}^{n}}{\left(2n+1\right)!}}{{\phi }^{2n+1}}}\\&=\sum \limits _{n=0}^{\infty }{{\frac {1}{\left(2n\right)!}}{{\bar {\bar {M}}}^{2n}}{{\phi }^{2n}}-{\bar {\bar {M}}}}\sum \limits _{n=0}^{\infty }{{\frac {1}{\left(2n+1\right)!}}{{\bar {\bar {M}}}^{2n+1}}{{\phi }^{2n+1}}}\\&=\exp \left(-{\bar {\bar {M}}}\phi \right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.947 KB / 601 B) :

(cosϕsinϕsinϕcosϕ)=1¯¯n=0(1)n(2n)!ϕ2nM¯¯n=0(1)n(2n+1)!ϕ2n+1=n=01(2n)!M¯¯2nϕ2nM¯¯n=01(2n+1)!M¯¯2n+1ϕ2n+1=exp(M¯¯ϕ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd><mtd><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mn>1</mn><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi></mrow></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><msup><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>M</mi><mo>¯</mo></mover></mrow></mrow><mo>¯</mo></mover></mrow></mrow><mi>&#x03D5;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Räumliche Isotropie page

Identifiers

  • ϕ
  • ϕ
  • ϕ
  • ϕ
  • 1¯¯
  • n
  • n
  • n
  • ϕ
  • n
  • M¯¯
  • n
  • n
  • n
  • ϕ
  • n
  • n
  • n
  • M¯¯
  • n
  • ϕ
  • n
  • M¯¯
  • n
  • n
  • M¯¯
  • n
  • ϕ
  • n
  • M¯¯
  • ϕ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results