Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1826.3 on revision:1826

* Page found: Das Wasserstoffatom (relativistsich) (eq math.1826.3)

(force rerendering)

Occurrences on the following pages:

Hash: 4ef3d42f2ed230d08d3ef03d5e5441d8

TeX (original user input):

\begin{align}

& {{\alpha }_{r}}{{p}_{r}}+\frac{i}{r}{{\alpha }_{r}}\beta \hbar Q={{\alpha }_{r}}\left[ \frac{1}{r}\left( \bar{r}\bar{p}-i\hbar  \right)+\frac{i}{r}{{\beta }^{2}}\left( \tilde{\bar{\sigma }}\bar{L}+\hbar  \right) \right] \\

& {{\beta }^{2}}=1 \\

& =\frac{{{\alpha }_{r}}}{r}\left( \bar{r}\bar{p}+i\tilde{\bar{\sigma }}\bar{L} \right)=\frac{1}{{{r}^{2}}}\left[ \left( \bar{\alpha }\bar{r} \right)\left( \bar{r}\bar{p} \right)+i\left( \bar{\alpha }\bar{r} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right) \right] \\

& i\left( \bar{\alpha }\bar{r} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right)=i\left( \bar{\alpha }\bar{r} \right)\left( \bar{r}\bar{p} \right)-i{{r}^{2}}\left( \bar{\alpha }\bar{p} \right) \\

& \Rightarrow {{\alpha }_{r}}{{p}_{r}}+\frac{i}{r}{{\alpha }_{r}}\beta \hbar Q=\frac{1}{{{r}^{2}}}\left[ \left( \bar{\alpha }\bar{r} \right)\left( \bar{r}\bar{p} \right)+i\left( \bar{\alpha }\bar{r} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right) \right]=\bar{\alpha }\bar{p} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\alpha }_{r}}{{p}_{r}}+{\frac {i}{r}}{{\alpha }_{r}}\beta \hbar Q={{\alpha }_{r}}\left[{\frac {1}{r}}\left({\bar {r}}{\bar {p}}-i\hbar \right)+{\frac {i}{r}}{{\beta }^{2}}\left({\tilde {\bar {\sigma }}}{\bar {L}}+\hbar \right)\right]\\&{{\beta }^{2}}=1\\&={\frac {{\alpha }_{r}}{r}}\left({\bar {r}}{\bar {p}}+i{\tilde {\bar {\sigma }}}{\bar {L}}\right)={\frac {1}{{r}^{2}}}\left[\left({\bar {\alpha }}{\bar {r}}\right)\left({\bar {r}}{\bar {p}}\right)+i\left({\bar {\alpha }}{\bar {r}}\right)\left({\tilde {\bar {\sigma }}}{\bar {L}}\right)\right]\\&i\left({\bar {\alpha }}{\bar {r}}\right)\left({\tilde {\bar {\sigma }}}{\bar {L}}\right)=i\left({\bar {\alpha }}{\bar {r}}\right)\left({\bar {r}}{\bar {p}}\right)-i{{r}^{2}}\left({\bar {\alpha }}{\bar {p}}\right)\\&\Rightarrow {{\alpha }_{r}}{{p}_{r}}+{\frac {i}{r}}{{\alpha }_{r}}\beta \hbar Q={\frac {1}{{r}^{2}}}\left[\left({\bar {\alpha }}{\bar {r}}\right)\left({\bar {r}}{\bar {p}}\right)+i\left({\bar {\alpha }}{\bar {r}}\right)\left({\tilde {\bar {\sigma }}}{\bar {L}}\right)\right]={\bar {\alpha }}{\bar {p}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (9.441 KB / 641 B) :

αrpr+irαrβQ=αr[1r(r¯p¯i)+irβ2(σ¯~L¯+)]β2=1=αrr(r¯p¯+iσ¯~L¯)=1r2[(α¯r¯)(r¯p¯)+i(α¯r¯)(σ¯~L¯)]i(α¯r¯)(σ¯~L¯)=i(α¯r¯)(r¯p¯)ir2(α¯p¯)αrpr+irαrβQ=1r2[(α¯r¯)(r¯p¯)+i(α¯r¯)(σ¯~L¯)]=α¯p¯
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>Q</mi><mo>=</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>i</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>&#x03B2;</mi><mi data-mjx-alternate="1">&#x210F;</mi><mi>Q</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page

Identifiers

  • αr
  • pr
  • i
  • r
  • αr
  • β
  • Q
  • αr
  • r
  • r¯
  • p¯
  • i
  • i
  • r
  • β
  • σ¯~
  • L¯
  • β
  • αr
  • r
  • r¯
  • p¯
  • i
  • σ¯~
  • L¯
  • r
  • α¯
  • r¯
  • r¯
  • p¯
  • i
  • α¯
  • r¯
  • σ¯~
  • L¯
  • i
  • α¯
  • r¯
  • σ¯~
  • L¯
  • i
  • α¯
  • r¯
  • r¯
  • p¯
  • i
  • r
  • α¯
  • p¯
  • αr
  • pr
  • i
  • r
  • αr
  • β
  • Q
  • r
  • α¯
  • r¯
  • r¯
  • p¯
  • i
  • α¯
  • r¯
  • σ¯~
  • L¯
  • α¯
  • p¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results