Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1816.59 on revision:1816

* Page found: Klein- Gordon- Gleichung (eq math.1816.59)

(force rerendering)

Occurrences on the following pages:

Hash: 9cdbeb930ff426b33f8ca70324851f4c

TeX (original user input):

\begin{align}
& -{{\partial }^{i}}{{\partial }_{i}}\Psi ={{\left( \frac{{{m}_{0}}c}{\hbar } \right)}^{2}}\Psi =i{{k}^{j}}{{\partial }^{i}}{{\Psi }_{0}}\exp \left\{ -i{{k}_{j}}{{x}^{j}} \right\}={{k}^{j}}{{k}_{j}}\Psi ={{\left( \frac{{{m}_{0}}c}{\hbar } \right)}^{2}}\Psi  \\
& \Rightarrow {{k}^{j}}{{k}_{j}}\equiv {{\left( \frac{\omega }{c} \right)}^{2}}-{{{\bar{k}}}^{2}}={{\left( \frac{{{m}_{0}}c}{\hbar } \right)}^{2}} \\
& \Rightarrow {{\omega }^{2}}={{c}^{2}}\left[{{\left( \frac{{{m}_{0}}c}{\hbar } \right)}^{2}}+{{{\bar{k}}}^{2}} \right] \\
\end{align}

TeX (checked):

{\begin{aligned}&-{{\partial }^{i}}{{\partial }_{i}}\Psi ={{\left({\frac {{{m}_{0}}c}{\hbar }}\right)}^{2}}\Psi =i{{k}^{j}}{{\partial }^{i}}{{\Psi }_{0}}\exp \left\{-i{{k}_{j}}{{x}^{j}}\right\}={{k}^{j}}{{k}_{j}}\Psi ={{\left({\frac {{{m}_{0}}c}{\hbar }}\right)}^{2}}\Psi \\&\Rightarrow {{k}^{j}}{{k}_{j}}\equiv {{\left({\frac {\omega }{c}}\right)}^{2}}-{{\bar {k}}^{2}}={{\left({\frac {{{m}_{0}}c}{\hbar }}\right)}^{2}}\\&\Rightarrow {{\omega }^{2}}={{c}^{2}}\left[{{\left({\frac {{{m}_{0}}c}{\hbar }}\right)}^{2}}+{{\bar {k}}^{2}}\right]\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.45 KB / 572 B) :

iiΨ=(m0c)2Ψ=ikjiΨ0exp{ikjxj}=kjkjΨ=(m0c)2Ψkjkj(ωc)2k¯2=(m0c)2ω2=c2[(m0c)2+k¯2]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mi>i</mi><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msup><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>exp</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mo>&#x2212;</mo><mi>i</mi><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msup><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msup><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mo>&#x2261;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C9;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Klein- Gordon- Gleichung page

Identifiers

  • i
  • i
  • Ψ
  • m0
  • c
  • Ψ
  • i
  • k
  • j
  • i
  • Ψ0
  • i
  • kj
  • x
  • j
  • k
  • j
  • kj
  • Ψ
  • m0
  • c
  • Ψ
  • k
  • j
  • kj
  • ω
  • c
  • k¯
  • m0
  • c
  • ω
  • c
  • m0
  • c
  • k¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results