Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1807.27 on revision:1807

* Page found: Dirac- Gleichung für Elektronen (eq math.1807.27)

(force rerendering)

Occurrences on the following pages:

Hash: 4027fa93de15e95caf4c17bf9fcadf7c

TeX (original user input):

\begin{align}

& i\hbar \frac{\partial }{\partial t}\Psi =\left( c\bar{\alpha }\bar{p}+{{m}_{0}}{{c}^{2}}\beta  \right)\Psi  \\

& -{{\hbar }^{2}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}\Psi =\left( c\bar{\alpha }\bar{p}+{{m}_{0}}{{c}^{2}}\beta  \right)\left( c\bar{\alpha }\bar{p}+{{m}_{0}}{{c}^{2}}\beta  \right)\Psi  \\

& \Rightarrow -{{\hbar }^{2}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}\Psi =\left( {{c}^{2}}\left( \bar{\alpha }\bar{p} \right)\left( \bar{\alpha }\bar{p} \right)+{{m}_{0}}{{c}^{3}}\left( \bar{\alpha }\bar{p}\beta +\beta \bar{\alpha }\bar{p} \right)+{{m}_{0}}^{2}{{c}^{4}}{{\beta }^{2}} \right)\Psi  \\

& \Rightarrow -{{\hbar }^{2}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}\Psi =\left( {{c}^{2}}\sum\limits_{\mu ,\nu =1}^{3}{{}}\left( {{\alpha }^{\mu }}{{\alpha }^{\nu }}{{p}^{\mu }}{{p}^{\nu }} \right)+{{m}_{0}}{{c}^{3}}\sum\limits_{\mu =1}^{3}{{}}\left( {{\alpha }^{\mu }}\beta +\beta {{\alpha }^{\mu }} \right){{p}^{\mu }}+{{m}_{0}}^{2}{{c}^{4}}{{\beta }^{2}} \right)\Psi  \\

\end{align}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (7.71 KB / 649 B) :

itΨ=(cα¯p¯+m0c2β)Ψ22t2Ψ=(cα¯p¯+m0c2β)(cα¯p¯+m0c2β)Ψ22t2Ψ=(c2(α¯p¯)(α¯p¯)+m0c3(α¯p¯β+βα¯p¯)+m02c4β2)Ψ22t2Ψ=(c2μ,ν=13(αμανpμpν)+m0c3μ=13(αμβ+βαμ)pμ+m02c4β2)Ψ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mi>&#x03B2;</mi><mo>+</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mo>,</mo><mi>&#x03BD;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mi>&#x03B2;</mi><mo>+</mo><mi>&#x03B2;</mi><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo>+</mo><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dirac- Gleichung für Elektronen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results