Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1802.48 on revision:1802

* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1802.48)

(force rerendering)

Occurrences on the following pages:

Hash: 88e9b965047a6433bcccb15e9f485b11

TeX (original user input):

\begin{align}

& {{U}^{i}}_{k}=\left( \begin{matrix}

\gamma  & -\beta \gamma  & 0 & 0  \\

-\beta \gamma  & \gamma  & 0 & 0  \\

0 & 0 & 1 & 0  \\

0 & 0 & 0 & 1  \\

\end{matrix} \right)\quad \quad {{U}^{k}}_{l}=\left( \begin{matrix}

\gamma  & \beta \gamma  & 0 & 0  \\

\beta \gamma  & \gamma  & 0 & 0  \\

0 & 0 & 1 & 0  \\

0 & 0 & 0 & 1  \\

\end{matrix} \right) \\

& {{U}^{i}}_{k}{{U}^{k}}_{l}=\left( \begin{matrix}

{{\gamma }^{2}}-{{\beta }^{2}}{{\gamma }^{2}} & 0 & 0 & 0  \\

0 & -{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}} & 0 & 0  \\

0 & 0 & 1 & 0  \\

0 & 0 & 0 & 1  \\

\end{matrix} \right)=\left( \begin{matrix}

1 & 0 & 0 & 0  \\

0 & 1 & 0 & 0  \\

0 & 0 & 1 & 0  \\

0 & 0 & 0 & 1  \\

\end{matrix} \right)={{\delta }^{i}}_{l} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{U}^{i}}_{k}=\left({\begin{matrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\\\end{matrix}}\right)\quad \quad {{U}^{k}}_{l}=\left({\begin{matrix}\gamma &\beta \gamma &0&0\\\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\\\end{matrix}}\right)\\&{{U}^{i}}_{k}{{U}^{k}}_{l}=\left({\begin{matrix}{{\gamma }^{2}}-{{\beta }^{2}}{{\gamma }^{2}}&0&0&0\\0&-{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}&0&0\\0&0&1&0\\0&0&0&1\\\end{matrix}}\right)=\left({\begin{matrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\\\end{matrix}}\right)={{\delta }^{i}}_{l}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.21 KB / 489 B) :

Uik=(γβγ00βγγ0000100001)Ukl=(γβγ00βγγ0000100001)UikUkl=(γ2β2γ20000β2γ2+γ20000100001)=(1000010000100001)=δil
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B3;</mi></mtd><mtd><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi>&#x03B3;</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><mi>&#x03B2;</mi><mi>&#x03B3;</mi></mtd><mtd><mi>&#x03B3;</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mspace width="1em"></mspace><mspace width="1em"></mspace><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B3;</mi></mtd><mtd><mi>&#x03B2;</mi><mi>&#x03B3;</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>&#x03B2;</mi><mi>&#x03B3;</mi></mtd><mtd><mi>&#x03B3;</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page

Identifiers

  • U
  • i
  • k
  • γ
  • β
  • γ
  • β
  • γ
  • γ
  • U
  • k
  • l
  • γ
  • β
  • γ
  • β
  • γ
  • γ
  • U
  • i
  • k
  • U
  • k
  • l
  • γ
  • β
  • γ
  • β
  • γ
  • γ
  • δ
  • i
  • l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results