Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1802.38 on revision:1802

* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1802.38)

(force rerendering)

Occurrences on the following pages:

Hash: c7ae09ae90baa820aa55532aa6a58e02

TeX (original user input):

\begin{align}

& {{g}^{ik}}:={{\delta }^{ik}}={{\delta }^{i}}_{k}\quad f\ddot{u}r\ k=0 \\

& {{g}^{ik}}:={{\delta }^{ik}}=-{{\delta }^{i}}_{k}\quad f\ddot{u}r\ k=1,2,3 \\

& {{g}^{ik}}:={{\delta }^{ik}}=\left( \begin{matrix}

1 & {} & {} & {}  \\

{} & -1 & {} & {}  \\

{} & {} & -1 & {}  \\

{} & {} & {} & -1  \\

\end{matrix} \right)={{g}_{ik}} \\

& {{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}={{a}_{i}}\quad f\ddot{u}r\ i=0\Rightarrow {{a}_{i}}={{a}^{i}} \\

& {{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}=-{{a}_{i}}\quad f\ddot{u}r\ i=1,2,3\Rightarrow -{{a}_{i}}={{a}^{i}} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{g}^{ik}}:={{\delta }^{ik}}={{\delta }^{i}}_{k}\quad f{\ddot {u}}r\ k=0\\&{{g}^{ik}}:={{\delta }^{ik}}=-{{\delta }^{i}}_{k}\quad f{\ddot {u}}r\ k=1,2,3\\&{{g}^{ik}}:={{\delta }^{ik}}=\left({\begin{matrix}1&{}&{}&{}\\{}&-1&{}&{}\\{}&{}&-1&{}\\{}&{}&{}&-1\\\end{matrix}}\right)={{g}_{ik}}\\&{{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}={{a}_{i}}\quad f{\ddot {u}}r\ i=0\Rightarrow {{a}_{i}}={{a}^{i}}\\&{{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}=-{{a}_{i}}\quad f{\ddot {u}}r\ i=1,2,3\Rightarrow -{{a}_{i}}={{a}^{i}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.484 KB / 540 B) :

gik:=δik=δikfu¨rk=0gik:=δik=δikfu¨rk=1,2,3gik:=δik=(1111)=gikgikak=δikak=aifu¨ri=0ai=aigikak=δikak=aifu¨ri=1,2,3ai=ai
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><mi>:</mi><mo>=</mo><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><mo>=</mo><msub><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="0.5em"/><mi>k</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><mi>:</mi><mo>=</mo><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><mo>=</mo><mo>&#x2212;</mo><msub><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="0.5em"/><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><mi>:</mi><mo>=</mo><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="0.5em"/><mi>i</mi><mo>=</mo><mn>0</mn><mo>&#x21D2;</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="0.5em"/><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>&#x21D2;</mo><mo>&#x2212;</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page

Identifiers

  • g
  • i
  • k
  • δ
  • i
  • k
  • δ
  • i
  • k
  • f
  • u¨
  • r
  • k
  • g
  • i
  • k
  • δ
  • i
  • k
  • δ
  • i
  • k
  • f
  • u¨
  • r
  • k
  • g
  • i
  • k
  • δ
  • i
  • k
  • gik
  • g
  • i
  • k
  • ak
  • δ
  • i
  • k
  • ak
  • ai
  • f
  • u¨
  • r
  • i
  • ai
  • a
  • i
  • g
  • i
  • k
  • ak
  • δ
  • i
  • k
  • ak
  • ai
  • f
  • u¨
  • r
  • i
  • ai
  • a
  • i

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results