Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1796.28 on revision:1796

* Page found: Drehimpulsdarstellung und Streuphasen (eq math.1796.28)

(force rerendering)

Occurrences on the following pages:

Hash: 0e81e3a751fed490d60e203e0e33cfc0

TeX (original user input):

\begin{align}
& \begin{matrix}
\lim   \\
r\to \infty   \\
\end{matrix}\Psi (\bar{r})={{e}^{ikr\cos \vartheta }}+f(\vartheta )\frac{{{e}^{ikr}}}{r} \\
& \begin{matrix}
\lim   \\
r\to \infty   \\
\end{matrix}\sum\limits_{l}{{}}\frac{{{u}_{l}}}{r}{{P}_{l}}(\xi )=\sum\limits_{l}{{}}\left\{ \left( 2l+1 \right)\frac{{{i}^{l}}}{kr}\sin \left( kr-l\frac{\pi }{2} \right)+{{f}_{l}}\frac{{{e}^{ikr}}}{r} \right\}{{P}_{l}}(\xi ) \\
\end{align}

TeX (checked):

{\begin{aligned}&{\begin{matrix}\lim \\r\to \infty \\\end{matrix}}\Psi ({\bar {r}})={{e}^{ikr\cos \vartheta }}+f(\vartheta ){\frac {{e}^{ikr}}{r}}\\&{\begin{matrix}\lim \\r\to \infty \\\end{matrix}}\sum \limits _{l}{}{\frac {{u}_{l}}{r}}{{P}_{l}}(\xi )=\sum \limits _{l}{}\left\{\left(2l+1\right){\frac {{i}^{l}}{kr}}\sin \left(kr-l{\frac {\pi }{2}}\right)+{{f}_{l}}{\frac {{e}^{ikr}}{r}}\right\}{{P}_{l}}(\xi )\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.553 KB / 626 B) :

limrΨ(r¯)=eikrcosϑ+f(ϑ)eikrrlimrlulrPl(ξ)=l{(2l+1)ilkrsin(krlπ2)+fleikrr}Pl(ξ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>r</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>r</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow></msup><mo>+</mo><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>r</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>r</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munder><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>i</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>r</mi><mo>&#x2212;</mo><mi>l</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>r</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpulsdarstellung und Streuphasen page

Identifiers

  • r
  • Ψ
  • r¯
  • e
  • i
  • k
  • r
  • ϑ
  • f
  • ϑ
  • e
  • i
  • k
  • r
  • r
  • r
  • l
  • ul
  • r
  • Pl
  • ξ
  • l
  • l
  • i
  • l
  • k
  • r
  • k
  • r
  • l
  • π
  • fl
  • e
  • i
  • k
  • r
  • r
  • Pl
  • ξ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results