Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1796.25 on revision:1796

* Page found: Drehimpulsdarstellung und Streuphasen (eq math.1796.25)

(force rerendering)

Occurrences on the following pages:

Hash: 188119d4b6693c786b0640f28e35e1f2

TeX (original user input):

\begin{array}{*{35}{l}}

{} & {{\sigma }_{tot.}}=\int_{{}}^{{}}{d\Omega }{{\left| f(\vartheta ) \right|}^{2}}  \\
{} & auerdem  \\
{} & \int_{-1}^{1}{d\xi }{{P}_{l}}(\xi ){{P}_{l\overset{\acute{\ }}{\mathop{\ }}\,}}(\xi )=\frac{2}{2l+1}{{\delta }_{ll\overset{\acute{\ }}{\mathop{\ }}\,}}  \\
{} & \Rightarrow {{\sigma }_{tot.}}=\int_{{}}^{{}}{d\Omega }{{\left| f(\vartheta ) \right|}^{2}}=2\pi \sum\limits_{l=0}^{\infty }{\frac{2}{2l+1}{{\left| {{f}_{l}} \right|}^{2}}=:}\sum\limits_{l=0}^{\infty }{{}}{{\sigma }_{l}}  \\
\end{array}

TeX (checked):

{\begin{array}{*{35}{l}}{}&{{\sigma }_{tot.}}=\int _{}^{}{d\Omega }{{\left|f(\vartheta )\right|}^{2}}\\{}&auerdem\\{}&\int _{-1}^{1}{d\xi }{{P}_{l}}(\xi ){{P}_{l{\overset {\acute {\ }}{\mathop {\ } }}\,}}(\xi )={\frac {2}{2l+1}}{{\delta }_{ll{\overset {\acute {\ }}{\mathop {\ } }}\,}}\\{}&\Rightarrow {{\sigma }_{tot.}}=\int _{}^{}{d\Omega }{{\left|f(\vartheta )\right|}^{2}}=2\pi \sum \limits _{l=0}^{\infty }{{\frac {2}{2l+1}}{{\left|{{f}_{l}}\right|}^{2}}=:}\sum \limits _{l=0}^{\infty }{}{{\sigma }_{l}}\\\end{array}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.488 KB / 693 B) :

σtot.=dΩ|f(ϑ)|2auerdem11dξPl(ξ)Pl´(ξ)=22l+1δll´σtot.=dΩ|f(ϑ)|2=2πl=022l+1|fl|2=:l=0σl
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt" columnalign="left "><mtr><mtd></mtd><mtd><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mi>o</mi><mi>t</mi><mo>.</mo></mrow></mrow></msub><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi mathvariant="normal">&#x03A9;</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><mi>u</mi><mi>e</mi><mi>r</mi><mi>d</mi><mi>e</mi><mi>m</mi></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03BE;</mi></mrow><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mrow data-mjx-texclass="ORD"><mover><mrow><mrow data-mjx-texclass="OP"><mspace width="0.5em"/></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mover></mrow><mspace width="0.167em"></mspace></mrow></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>l</mi><mrow data-mjx-texclass="ORD"><mover><mrow><mrow data-mjx-texclass="OP"><mspace width="0.5em"/></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mover></mrow><mspace width="0.167em"></mspace></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>t</mi><mi>o</mi><mi>t</mi><mo>.</mo></mrow></mrow></msub><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi mathvariant="normal">&#x03A9;</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>2</mn><mi>&#x03C0;</mi><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>:</mi></mrow><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpulsdarstellung und Streuphasen page

Identifiers

  • σ
  • t
  • o
  • t
  • Ω
  • f
  • ϑ
  • a
  • u
  • e
  • r
  • d
  • e
  • m
  • ξ
  • Pl
  • ξ
  • P
  • l
  • ´
  • ξ
  • l
  • δ
  • l
  • l
  • ´
  • σ
  • t
  • o
  • t
  • Ω
  • f
  • ϑ
  • π
  • l
  • l
  • fl
  • l
  • σl

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results