Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1796.15 on revision:1796

* Page found: Drehimpulsdarstellung und Streuphasen (eq math.1796.15)

(force rerendering)

Occurrences on the following pages:

Hash: 3384f8dcee46dda0bbf8b27c9b788554

TeX (original user input):

\begin{align}

& \begin{matrix}

\lim   \\

r\to \infty   \\

\end{matrix}\frac{1}{r}{{u}_{l}}(r)=\frac{2l+1}{2}\frac{1}{ikr}\left\{ {{e}^{ikr}}-{{(-1)}^{l}}{{e}^{-ikr}} \right\}=\frac{2l+1}{2}\frac{1}{ikr}{{i}^{l}}\left\{ {{e}^{i\left( kr-l\frac{\pi }{2} \right)}}-{{e}^{-i\left( kr-l\frac{\pi }{2} \right)}} \right\} \\

& \Rightarrow \begin{matrix}

\lim   \\

r\to \infty   \\

\end{matrix}\frac{1}{r}{{u}_{l}}(r)=\left( 2l+1 \right)\frac{{{i}^{l}}}{kr}\sin \left( kr-l\frac{\pi }{2} \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&{\begin{matrix}\lim \\r\to \infty \\\end{matrix}}{\frac {1}{r}}{{u}_{l}}(r)={\frac {2l+1}{2}}{\frac {1}{ikr}}\left\{{{e}^{ikr}}-{{(-1)}^{l}}{{e}^{-ikr}}\right\}={\frac {2l+1}{2}}{\frac {1}{ikr}}{{i}^{l}}\left\{{{e}^{i\left(kr-l{\frac {\pi }{2}}\right)}}-{{e}^{-i\left(kr-l{\frac {\pi }{2}}\right)}}\right\}\\&\Rightarrow {\begin{matrix}\lim \\r\to \infty \\\end{matrix}}{\frac {1}{r}}{{u}_{l}}(r)=\left(2l+1\right){\frac {{i}^{l}}{kr}}\sin \left(kr-l{\frac {\pi }{2}}\right)\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.681 KB / 598 B) :

limr1rul(r)=2l+121ikr{eikr(1)leikr}=2l+121ikril{ei(krlπ2)ei(krlπ2)}limr1rul(r)=(2l+1)ilkrsin(krlπ2)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>r</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>r</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>&#x2212;</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>k</mi><mi>r</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>r</mi></mrow></mrow></mfrac></mrow><msup><mi>i</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>r</mi><mo>&#x2212;</mo><mi>l</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>r</mi><mo>&#x2212;</mo><mi>l</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>r</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>i</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mi>sin</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mi>r</mi><mo>&#x2212;</mo><mi>l</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpulsdarstellung und Streuphasen page

Identifiers

  • r
  • r
  • ul
  • r
  • l
  • i
  • k
  • r
  • e
  • i
  • k
  • r
  • l
  • e
  • i
  • k
  • r
  • l
  • i
  • k
  • r
  • i
  • l
  • e
  • i
  • k
  • r
  • l
  • π
  • e
  • i
  • k
  • r
  • l
  • π
  • r
  • r
  • ul
  • r
  • l
  • i
  • l
  • k
  • r
  • k
  • r
  • l
  • π

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results