Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1790.15 on revision:1790

* Page found: Bornsche Näherung (eq math.1790.15)

(force rerendering)

Occurrences on the following pages:

Hash: bd3af09d692ced294b1a736de2d87191

TeX (original user input):

\begin{align}

& f(\vartheta )=-\frac{2m}{{{\hbar }^{2}}}\frac{1}{4\pi }\int_{0}^{\infty }{r{{\acute{\ }}^{2}}dr\acute{\ }}V(\bar{r}\acute{\ })\int_{-1}^{1}{d(\cos \vartheta \acute{\ })}{{e}^{iKr\acute{\ }\cos \vartheta \acute{\ }}}\int_{0}^{2\pi }{d\phi \acute{\ }} \\

& \int_{-1}^{1}{d(\cos \vartheta \acute{\ })}{{e}^{iKr\acute{\ }\cos \vartheta \acute{\ }}}=\frac{1}{iKr\acute{\ }}\left( {{e}^{iKr\acute{\ }}}-{{e}^{-iKr\acute{\ }}} \right)=\frac{2\sin Kr\acute{\ }}{Kr\acute{\ }} \\

\end{align}

TeX (checked):

{\begin{aligned}&f(\vartheta )=-{\frac {2m}{{\hbar }^{2}}}{\frac {1}{4\pi }}\int _{0}^{\infty }{r{{\acute {\ }}^{2}}dr{\acute {\ }}}V({\bar {r}}{\acute {\ }})\int _{-1}^{1}{d(\cos \vartheta {\acute {\ }})}{{e}^{iKr{\acute {\ }}\cos \vartheta {\acute {\ }}}}\int _{0}^{2\pi }{d\phi {\acute {\ }}}\\&\int _{-1}^{1}{d(\cos \vartheta {\acute {\ }})}{{e}^{iKr{\acute {\ }}\cos \vartheta {\acute {\ }}}}={\frac {1}{iKr{\acute {\ }}}}\left({{e}^{iKr{\acute {\ }}}}-{{e}^{-iKr{\acute {\ }}}}\right)={\frac {2\sin Kr{\acute {\ }}}{Kr{\acute {\ }}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.121 KB / 680 B) :

f(ϑ)=2m214π0r´2dr´V(r¯´)11d(cosϑ´)eiKr´cosϑ´02πdϕ´11d(cosϑ´)eiKr´cosϑ´=1iKr´(eiKr´eiKr´)=2sinKr´Kr´
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>r</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>d</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow><mi>V</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>sin</mi><mo>&#x2061;</mo><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>K</mi><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Bornsche Näherung page

Identifiers

  • f
  • ϑ
  • m
  • π
  • r
  • ´
  • r
  • ´
  • V
  • r¯
  • ´
  • ϑ
  • ´
  • e
  • i
  • K
  • r
  • ´
  • ϑ
  • ´
  • π
  • ϕ
  • ´
  • ϑ
  • ´
  • e
  • i
  • K
  • r
  • ´
  • ϑ
  • ´
  • i
  • K
  • r
  • ´
  • e
  • i
  • K
  • r
  • ´
  • e
  • i
  • K
  • r
  • ´
  • K
  • r
  • ´
  • K
  • r
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results