Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1777.72 on revision:1777

* Page found: Lippmann- Schwinger- Gleichung (eq math.1777.72)

(force rerendering)

Occurrences on the following pages:

Hash: 87f21fa968bdd6a6437d2b16fb016ee8

TeX (original user input):

\begin{align}
& \left\langle  \bar{r}\acute{\ } \right|{{{\hat{H}}}^{(1)}}\left| {{\Psi }^{(+)}} \right\rangle =V(\bar{r}\acute{\ }){{\Psi }^{(+)}}(\bar{r}\acute{\ }) \\
& \Rightarrow {{\Psi }^{(+)}}(\bar{r})={{e}^{i\bar{k}\bar{r}}}-\frac{2m}{{{\hbar }^{2}}}\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}\frac{{{e}^{i\bar{k}\left| \bar{r}-\bar{r}\acute{\ } \right|}}}{4\pi \left| \bar{r}-\bar{r}\acute{\ } \right|}V(\bar{r}\acute{\ }){{\Psi }^{(+)}}(\bar{r}\acute{\ }) \\
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {\bar {r}}{\acute {\ }}\right|{{\hat {H}}^{(1)}}\left|{{\Psi }^{(+)}}\right\rangle =V({\bar {r}}{\acute {\ }}){{\Psi }^{(+)}}({\bar {r}}{\acute {\ }})\\&\Rightarrow {{\Psi }^{(+)}}({\bar {r}})={{e}^{i{\bar {k}}{\bar {r}}}}-{\frac {2m}{{\hbar }^{2}}}\int _{}^{}{{{d}^{3}}r{\acute {\ }}}{\frac {{e}^{i{\bar {k}}\left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}{4\pi \left|{\bar {r}}-{\bar {r}}{\acute {\ }}\right|}}V({\bar {r}}{\acute {\ }}){{\Psi }^{(+)}}({\bar {r}}{\acute {\ }})\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.831 KB / 654 B) :

r¯´|H^(1)|Ψ(+)=V(r¯´)Ψ(+)(r¯´)Ψ(+)(r¯)=eik¯r¯2m2d3r´eik¯|r¯r¯´|4π|r¯r¯´|V(r¯´)Ψ(+)(r¯´)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi>V</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></mfrac></mrow><mi>V</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lippmann- Schwinger- Gleichung page

Identifiers

  • r¯
  • ´
  • H^
  • Ψ
  • V
  • r¯
  • ´
  • Ψ
  • r¯
  • ´
  • Ψ
  • r¯
  • e
  • i
  • k¯
  • r¯
  • m
  • r
  • ´
  • e
  • i
  • k¯
  • r¯
  • r¯
  • ´
  • π
  • r¯
  • r¯
  • ´
  • V
  • r¯
  • ´
  • Ψ
  • r¯
  • ´

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results