Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1777.55 on revision:1777

* Page found: Lippmann- Schwinger- Gleichung (eq math.1777.55)

(force rerendering)

Occurrences on the following pages:

Hash: 78e6434e5ebc14510be4bad4df1820b7

TeX (original user input):

\begin{align}
 \left\langle  {\bar{r}}  |  {{\Psi }^{(+)}} \right\rangle &=\left\langle  {\bar{r}}  |  \Phi  \right\rangle +\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }\left\langle  {\bar{r}} \right|\frac{1}{\left( E-{{{\hat{H}}}_{0}}+i\varepsilon  \right)}\left| \bar{r}\acute{\ } \right\rangle }\left\langle  \bar{r}\acute{\ } \right|{{{\hat{H}}}^{1}}\left| {{\Psi }^{(+)}} \right\rangle  \\
& =\left\langle  {\bar{r}}  |  \Phi  \right\rangle +\frac{2m}{{{\hbar }^{2}}}\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }{{G}_{+}}\left( \bar{r}-\bar{r}\acute{\ } \right)}\left\langle  \bar{r}\acute{\ } \right|{{{\hat{H}}}^{1}}\left| {{\Psi }^{(+)}} \right\rangle ={{e}^{i\bar{k}\bar{r}}}+\frac{2m}{{{\hbar }^{2}}}\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }\frac{-{{e}^{ik\left| \left( \bar{r}-\bar{r}\acute{\ } \right) \right|}}}{4\pi \left| \left( \bar{r}-\bar{r}\acute{\ } \right) \right|}}\left\langle  \bar{r}\acute{\ } \right|{{{\hat{H}}}^{1}}\left| {{\Psi }^{(+)}} \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}\left\langle {\bar {r}}|{{\Psi }^{(+)}}\right\rangle &=\left\langle {\bar {r}}|\Phi \right\rangle +\int _{}^{}{{{d}^{3}}r{\acute {\ }}\left\langle {\bar {r}}\right|{\frac {1}{\left(E-{{\hat {H}}_{0}}+i\varepsilon \right)}}\left|{\bar {r}}{\acute {\ }}\right\rangle }\left\langle {\bar {r}}{\acute {\ }}\right|{{\hat {H}}^{1}}\left|{{\Psi }^{(+)}}\right\rangle \\&=\left\langle {\bar {r}}|\Phi \right\rangle +{\frac {2m}{{\hbar }^{2}}}\int _{}^{}{{{d}^{3}}r{\acute {\ }}{{G}_{+}}\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)}\left\langle {\bar {r}}{\acute {\ }}\right|{{\hat {H}}^{1}}\left|{{\Psi }^{(+)}}\right\rangle ={{e}^{i{\bar {k}}{\bar {r}}}}+{\frac {2m}{{\hbar }^{2}}}\int _{}^{}{{{d}^{3}}r{\acute {\ }}{\frac {-{{e}^{ik\left|\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\right|}}}{4\pi \left|\left({\bar {r}}-{\bar {r}}{\acute {\ }}\right)\right|}}}\left\langle {\bar {r}}{\acute {\ }}\right|{{\hat {H}}^{1}}\left|{{\Psi }^{(+)}}\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (9.366 KB / 776 B) :

r¯|Ψ(+)=r¯|Φ+d3r´r¯|1(EH^0+iε)|r¯´r¯´|H^1|Ψ(+)=r¯|Φ+2m2d3r´G+(r¯r¯´)r¯´|H^1|Ψ(+)=eik¯r¯+2m2d3r´eik|(r¯r¯´)|4π|(r¯r¯´)|r¯´|H^1|Ψ(+)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>|</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><mi>i</mi><mi>&#x03B5;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msup><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mrow></mrow></mfrac></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mo>+</mo><mo stretchy="false">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lippmann- Schwinger- Gleichung page

Identifiers

  • r¯
  • Ψ
  • r¯
  • Φ
  • r
  • ´
  • r¯
  • E
  • H^0
  • i
  • ε
  • r¯
  • ´
  • r¯
  • ´
  • H^
  • Ψ
  • r¯
  • Φ
  • m
  • r
  • ´
  • G+
  • r¯
  • r¯
  • ´
  • r¯
  • ´
  • H^
  • Ψ
  • e
  • i
  • k¯
  • r¯
  • m
  • r
  • ´
  • e
  • i
  • k
  • r¯
  • r¯
  • ´
  • π
  • r¯
  • r¯
  • ´
  • r¯
  • ´
  • H^
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results