Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1777.49 on revision:1777

* Page found: Lippmann- Schwinger- Gleichung (eq math.1777.49)

(force rerendering)

Occurrences on the following pages:

Hash: 039a2c0ff1b04908f7eb4a2e495e4ef7

TeX (original user input):

\begin{align}
& RES{{\left. \frac{q{{e}^{iqR}}}{{{{\bar{k}}}^{2}}-{{{\bar{q}}}^{2}}+i\eta } \right|}_{q={{q}_{1}}}}=RES{{\left. \frac{q{{e}^{iqR}}}{\left( \sqrt{{{{\bar{k}}}^{2}}+i\eta }-q \right)\left( \sqrt{{{{\bar{k}}}^{2}}+i\eta }+q \right)} \right|}_{{{q}_{1}}\equiv \sqrt{{{{\bar{k}}}^{2}}+i\eta }}} \\
& \sqrt{{{{\bar{k}}}^{2}}+i\eta }={{q}_{1}}=-{{q}_{2}} \\
& RES{{\left. \frac{q{{e}^{iqR}}}{\left( \sqrt{{{{\bar{k}}}^{2}}+i\eta }-q \right)\left( \sqrt{{{{\bar{k}}}^{2}}+i\eta }+q \right)} \right|}_{{{q}_{1}}\equiv \sqrt{{{{\bar{k}}}^{2}}+i\eta }}}=\begin{matrix}
\lim   \\
q->q1  \\
\end{matrix}\frac{\left( q-{{q}_{1}} \right)q{{e}^{iqR}}}{\left( {{q}_{1}}-q \right)\left( q-{{q}_{2}} \right)}=\frac{{{q}_{1}}{{e}^{i{{q}_{1}}R}}}{\left( {{q}_{1}}-{{q}_{2}} \right)} \\
& =-\frac{{{e}^{i\sqrt{{{{\bar{k}}}^{2}}+i\eta }R}}}{2} \\
& \begin{matrix}
\lim   \\
\eta \to 0  \\
\end{matrix}-\frac{{{e}^{i\sqrt{{{{\bar{k}}}^{2}}+i\eta }R}}}{2}=-\frac{{{e}^{ikR}}}{2} \\
\end{align}

TeX (checked):

{\begin{aligned}&RES{{\left.{\frac {q{{e}^{iqR}}}{{{\bar {k}}^{2}}-{{\bar {q}}^{2}}+i\eta }}\right|}_{q={{q}_{1}}}}=RES{{\left.{\frac {q{{e}^{iqR}}}{\left({\sqrt {{{\bar {k}}^{2}}+i\eta }}-q\right)\left({\sqrt {{{\bar {k}}^{2}}+i\eta }}+q\right)}}\right|}_{{{q}_{1}}\equiv {\sqrt {{{\bar {k}}^{2}}+i\eta }}}}\\&{\sqrt {{{\bar {k}}^{2}}+i\eta }}={{q}_{1}}=-{{q}_{2}}\\&RES{{\left.{\frac {q{{e}^{iqR}}}{\left({\sqrt {{{\bar {k}}^{2}}+i\eta }}-q\right)\left({\sqrt {{{\bar {k}}^{2}}+i\eta }}+q\right)}}\right|}_{{{q}_{1}}\equiv {\sqrt {{{\bar {k}}^{2}}+i\eta }}}}={\begin{matrix}\lim \\q->q1\\\end{matrix}}{\frac {\left(q-{{q}_{1}}\right)q{{e}^{iqR}}}{\left({{q}_{1}}-q\right)\left(q-{{q}_{2}}\right)}}={\frac {{{q}_{1}}{{e}^{i{{q}_{1}}R}}}{\left({{q}_{1}}-{{q}_{2}}\right)}}\\&=-{\frac {{e}^{i{\sqrt {{{\bar {k}}^{2}}+i\eta }}R}}{2}}\\&{\begin{matrix}\lim \\\eta \to 0\\\end{matrix}}-{\frac {{e}^{i{\sqrt {{{\bar {k}}^{2}}+i\eta }}R}}{2}}=-{\frac {{e}^{ikR}}{2}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (9.065 KB / 698 B) :

RESqeiqRk¯2q¯2+iη|q=q1=RESqeiqR(k¯2+iηq)(k¯2+iη+q)|q1k¯2+iηk¯2+iη=q1=q2RESqeiqR(k¯2+iηq)(k¯2+iη+q)|q1k¯2+iη=limq>q1(qq1)qeiqR(q1q)(qq2)=q1eiq1R(q1q2)=eik¯2+iηR2limη0eik¯2+iηR2=eikR2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>R</mi><mi>E</mi><mi>S</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><mo>=</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mrow></msub><mo>=</mo><mi>R</mi><mi>E</mi><mi>S</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mo>&#x2212;</mo><mi>q</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mo>+</mo><mi>q</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2261;</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mo>=</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>R</mi><mi>E</mi><mi>S</mi><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mo>&#x2212;</mo><mi>q</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mo>+</mo><mi>q</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2261;</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>q</mi><mo>&#x2212;</mo><mo>&gt;</mo><mi>q</mi><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>q</mi><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>q</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><mi>q</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>q</mi><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mi>R</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03B7;</mi><mo accent="false">&#x2192;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></msqrt></mrow><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lippmann- Schwinger- Gleichung page

Identifiers

  • R
  • E
  • S
  • q
  • e
  • i
  • q
  • R
  • k¯
  • q¯
  • i
  • η
  • q
  • q1
  • R
  • E
  • S
  • q
  • e
  • i
  • q
  • R
  • k¯
  • i
  • η
  • q
  • k¯
  • i
  • η
  • q
  • q1
  • k¯
  • i
  • η
  • k¯
  • i
  • η
  • q1
  • q2
  • R
  • E
  • S
  • q
  • e
  • i
  • q
  • R
  • k¯
  • i
  • η
  • q
  • k¯
  • i
  • η
  • q
  • q1
  • k¯
  • i
  • η
  • q
  • q
  • q
  • q1
  • q
  • e
  • i
  • q
  • R
  • q1
  • q
  • q
  • q2
  • q1
  • e
  • i
  • q1
  • R
  • q1
  • q2
  • e
  • i
  • k¯
  • i
  • η
  • R
  • η
  • e
  • i
  • k¯
  • i
  • η
  • R
  • e
  • i
  • k
  • R

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results