Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1777.46 on revision:1777

* Page found: Lippmann- Schwinger- Gleichung (eq math.1777.46)

(force rerendering)

Occurrences on the following pages:

Hash: 6171bda8118c1df436ad920af3d379a3

TeX (original user input):

\begin{matrix}

\lim   \\

\rho \to \infty   \\

\end{matrix}\oint\limits_{{}}{dq}q\frac{{{e}^{iqR}}}{{{{\bar{k}}}^{2}}-{{{\bar{q}}}^{2}}+i\eta }=\int_{-\infty }^{\infty }{dq}q\frac{{{e}^{iqR}}}{{{{\bar{k}}}^{2}}-{{{\bar{q}}}^{2}}+i\eta }+\begin{matrix}

\lim   \\

\rho \to \infty   \\

\end{matrix}\int_{0}^{\pi }{d\Phi i{{e}^{2i\Phi }}}\frac{{{\rho }^{2}}{{e}^{i\rho R\cos \Phi }}{{e}^{-}}^{\rho R\sin \Phi }}{{{{\bar{k}}}^{2}}-{{\rho }^{2}}{{e}^{2i\Phi }}+i\eta }

TeX (checked):

{\begin{matrix}\lim \\\rho \to \infty \\\end{matrix}}\oint \limits _{}{dq}q{\frac {{e}^{iqR}}{{{\bar {k}}^{2}}-{{\bar {q}}^{2}}+i\eta }}=\int _{-\infty }^{\infty }{dq}q{\frac {{e}^{iqR}}{{{\bar {k}}^{2}}-{{\bar {q}}^{2}}+i\eta }}+{\begin{matrix}\lim \\\rho \to \infty \\\end{matrix}}\int _{0}^{\pi }{d\Phi i{{e}^{2i\Phi }}}{\frac {{{\rho }^{2}}{{e}^{i\rho R\cos \Phi }}{{e}^{-}}^{\rho R\sin \Phi }}{{{\bar {k}}^{2}}-{{\rho }^{2}}{{e}^{2i\Phi }}+i\eta }}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.178 KB / 556 B) :

limρdqqeiqRk¯2q¯2+iη=dqqeiqRk¯2q¯2+iη+limρ0πdΦie2iΦρ2eiρRcosΦeρRsinΦk¯2ρ2e2iΦ+iη
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03C1;</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><munder><mstyle displaystyle="true"><mo>&#x222E;</mo></mstyle><mrow data-mjx-texclass="ORD"></mrow></munder><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><mi>q</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><mi>q</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>&#x03C1;</mi><mo accent="false">&#x2192;</mo><mi mathvariant="normal">&#x221E;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi mathvariant="normal">&#x03A6;</mi><mi>i</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>i</mi><mi mathvariant="normal">&#x03A6;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>&#x03C1;</mi><mi>R</mi><mi>cos</mi><mo>&#x2061;</mo><mi mathvariant="normal">&#x03A6;</mi></mrow></mrow></msup><msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03C1;</mi><mi>R</mi><mi>sin</mi><mo>&#x2061;</mo><mi mathvariant="normal">&#x03A6;</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mi>&#x03C1;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>i</mi><mi mathvariant="normal">&#x03A6;</mi></mrow></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></mrow></mfrac></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lippmann- Schwinger- Gleichung page

Identifiers

  • ρ
  • d
  • q
  • q
  • e
  • i
  • q
  • R
  • k¯
  • q¯
  • i
  • η
  • q
  • q
  • e
  • i
  • q
  • R
  • k¯
  • q¯
  • i
  • η
  • ρ
  • π
  • Φ
  • i
  • e
  • i
  • Φ
  • ρ
  • e
  • i
  • ρ
  • R
  • Φ
  • e
  • ρ
  • R
  • Φ
  • k¯
  • ρ
  • e
  • i
  • Φ
  • i
  • η

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results