Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1777.42 on revision:1777

* Page found: Lippmann- Schwinger- Gleichung (eq math.1777.42)

(force rerendering)

Occurrences on the following pages:

Hash: 357969d098c4f39ec311ffde45ff14ea

TeX (original user input):

\begin{align}

& {{G}_{+}}(\bar{R})=\frac{1}{{{\left( 2\pi  \right)}^{3}}}\int_{0}^{\infty }{dq}\int_{-1}^{1}{d\cos \vartheta }\int_{0}^{2\pi }{d\phi }\frac{{{q}^{2}}}{{{{\bar{k}}}^{2}}-{{{\bar{q}}}^{2}}+i\eta }{{e}^{iqR\cos \vartheta }} \\

& {{G}_{+}}(\bar{R})=\frac{1}{4{{\pi }^{2}}iqR}\int_{0}^{\infty }{dq}{{q}^{2}}\frac{{{e}^{iqR}}-{{e}^{-iqR}}}{q\left( {{{\bar{k}}}^{2}}-{{{\bar{q}}}^{2}}+i\eta  \right)} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{G}_{+}}({\bar {R}})={\frac {1}{{\left(2\pi \right)}^{3}}}\int _{0}^{\infty }{dq}\int _{-1}^{1}{d\cos \vartheta }\int _{0}^{2\pi }{d\phi }{\frac {{q}^{2}}{{{\bar {k}}^{2}}-{{\bar {q}}^{2}}+i\eta }}{{e}^{iqR\cos \vartheta }}\\&{{G}_{+}}({\bar {R}})={\frac {1}{4{{\pi }^{2}}iqR}}\int _{0}^{\infty }{dq}{{q}^{2}}{\frac {{{e}^{iqR}}-{{e}^{-iqR}}}{q\left({{\bar {k}}^{2}}-{{\bar {q}}^{2}}+i\eta \right)}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (4.609 KB / 652 B) :

G+(R¯)=1(2π)30dq11dcosϑ02πdϕq2k¯2q¯2+iηeiqRcosϑG+(R¯)=14π2iqR0dqq2eiqReiqRq(k¯2q¯2+iη)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>R</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03D5;</mi></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi></mrow></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>R</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><msup><mi>&#x03C0;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>q</mi></mrow><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>q</mi><mi>R</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mi>&#x03B7;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Lippmann- Schwinger- Gleichung page

Identifiers

  • G+
  • R¯
  • π
  • q
  • ϑ
  • π
  • ϕ
  • q
  • k¯
  • q¯
  • i
  • η
  • e
  • i
  • q
  • R
  • ϑ
  • G+
  • R¯
  • π
  • i
  • q
  • R
  • q
  • q
  • e
  • i
  • q
  • R
  • e
  • i
  • q
  • R
  • q
  • k¯
  • q¯
  • i
  • η

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results