Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1767.30 on revision:1767
* Page found: Variationsverfahren (eq math.1767.30)
(force rerendering)Occurrences on the following pages:
Hash: c67a9891a339a1df4d78b4466538788a
TeX (original user input):
\begin{align}
& \left\langle \Psi \right|\hat{H}\left| \Psi \right\rangle =\sum\limits_{n}^{{}}{{}}\left\langle \Psi \right|\hat{H}\left| {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle =\sum\limits_{n=0}^{\infty }{{}}{{E}_{n}}\left\langle \Psi | {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle \\
& \left\langle \Psi | {{\Psi }_{n}} \right\rangle =0,f\ddot{u}r\quad n=0 \\
& \Rightarrow \left\langle \Psi \right|\hat{H}\left| \Psi \right\rangle =\sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle \Psi | {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle \\
& \Rightarrow {{E}_{n}}\ge {{E}_{1}} \\
& \Rightarrow \sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle \Psi | {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle \ge {{E}_{1}}\sum\limits_{n=1}^{\infty }{{}}\left\langle \Psi | {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle \\
& \Rightarrow \sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle \Psi | {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle \ge {{E}_{1}}\left\langle \Psi | \Psi \right\rangle \Rightarrow {{E}_{1}}\le \frac{\sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle \Psi | {{\Psi }_{n}} \right\rangle \left\langle {{\Psi }_{n}} | \Psi \right\rangle }{\left\langle \Psi | \Psi \right\rangle } \\
& \Rightarrow {{E}_{1}}\le \frac{\left\langle \Psi \right|\hat{H}\left| \Psi \right\rangle }{\left\langle \Psi | \Psi \right\rangle } \\
\end{align}
TeX (checked):
{\begin{aligned}&\left\langle \Psi \right|{\hat {H}}\left|\Psi \right\rangle =\sum \limits _{n}^{}{}\left\langle \Psi \right|{\hat {H}}\left|{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle =\sum \limits _{n=0}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \\&\left\langle \Psi |{{\Psi }_{n}}\right\rangle =0,f{\ddot {u}}r\quad n=0\\&\Rightarrow \left\langle \Psi \right|{\hat {H}}\left|\Psi \right\rangle =\sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \\&\Rightarrow {{E}_{n}}\geq {{E}_{1}}\\&\Rightarrow \sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \geq {{E}_{1}}\sum \limits _{n=1}^{\infty }{}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \\&\Rightarrow \sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \geq {{E}_{1}}\left\langle \Psi |\Psi \right\rangle \Rightarrow {{E}_{1}}\leq {\frac {\sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle }{\left\langle \Psi |\Psi \right\rangle }}\\&\Rightarrow {{E}_{1}}\leq {\frac {\left\langle \Psi \right|{\hat {H}}\left|\Psi \right\rangle }{\left\langle \Psi |\Psi \right\rangle }}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (9.747 KB / 646 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="1em"></mspace><mi>n</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>≥</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>≥</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>≥</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>⇒</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>≤</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>≤</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Variationsverfahren page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results