Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1767.30 on revision:1767

* Page found: Variationsverfahren (eq math.1767.30)

(force rerendering)

Occurrences on the following pages:

Hash: c67a9891a339a1df4d78b4466538788a

TeX (original user input):

\begin{align}

& \left\langle  \Psi  \right|\hat{H}\left| \Psi  \right\rangle =\sum\limits_{n}^{{}}{{}}\left\langle  \Psi  \right|\hat{H}\left| {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle =\sum\limits_{n=0}^{\infty }{{}}{{E}_{n}}\left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle  \\

& \left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle =0,f\ddot{u}r\quad n=0 \\

& \Rightarrow \left\langle  \Psi  \right|\hat{H}\left| \Psi  \right\rangle =\sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle  \\

& \Rightarrow {{E}_{n}}\ge {{E}_{1}} \\

& \Rightarrow \sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle \ge {{E}_{1}}\sum\limits_{n=1}^{\infty }{{}}\left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle  \\

& \Rightarrow \sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle \ge {{E}_{1}}\left\langle  \Psi   |  \Psi  \right\rangle \Rightarrow {{E}_{1}}\le \frac{\sum\limits_{n=1}^{\infty }{{}}{{E}_{n}}\left\langle  \Psi   |  {{\Psi }_{n}} \right\rangle \left\langle  {{\Psi }_{n}}  |  \Psi  \right\rangle }{\left\langle  \Psi   |  \Psi  \right\rangle } \\

& \Rightarrow {{E}_{1}}\le \frac{\left\langle  \Psi  \right|\hat{H}\left| \Psi  \right\rangle }{\left\langle  \Psi   |  \Psi  \right\rangle } \\

\end{align}

TeX (checked):

{\begin{aligned}&\left\langle \Psi \right|{\hat {H}}\left|\Psi \right\rangle =\sum \limits _{n}^{}{}\left\langle \Psi \right|{\hat {H}}\left|{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle =\sum \limits _{n=0}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \\&\left\langle \Psi |{{\Psi }_{n}}\right\rangle =0,f{\ddot {u}}r\quad n=0\\&\Rightarrow \left\langle \Psi \right|{\hat {H}}\left|\Psi \right\rangle =\sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \\&\Rightarrow {{E}_{n}}\geq {{E}_{1}}\\&\Rightarrow \sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \geq {{E}_{1}}\sum \limits _{n=1}^{\infty }{}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \\&\Rightarrow \sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle \geq {{E}_{1}}\left\langle \Psi |\Psi \right\rangle \Rightarrow {{E}_{1}}\leq {\frac {\sum \limits _{n=1}^{\infty }{}{{E}_{n}}\left\langle \Psi |{{\Psi }_{n}}\right\rangle \left\langle {{\Psi }_{n}}|\Psi \right\rangle }{\left\langle \Psi |\Psi \right\rangle }}\\&\Rightarrow {{E}_{1}}\leq {\frac {\left\langle \Psi \right|{\hat {H}}\left|\Psi \right\rangle }{\left\langle \Psi |\Psi \right\rangle }}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (9.747 KB / 646 B) :

Ψ|H^|Ψ=nΨ|H^|ΨnΨn|Ψ=n=0EnΨ|ΨnΨn|ΨΨ|Ψn=0,fu¨rn=0Ψ|H^|Ψ=n=1EnΨ|ΨnΨn|ΨEnE1n=1EnΨ|ΨnΨn|ΨE1n=1Ψ|ΨnΨn|Ψn=1EnΨ|ΨnΨn|ΨE1Ψ|ΨE1n=1EnΨ|ΨnΨn|ΨΨ|ΨE1Ψ|H^|ΨΨ|Ψ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>0</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="1em"></mspace><mi>n</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2265;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x21D2;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2264;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2264;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Variationsverfahren page

Identifiers

  • Ψ
  • H^
  • Ψ
  • n
  • Ψ
  • H^
  • Ψn
  • Ψn
  • Ψ
  • n
  • En
  • Ψ
  • Ψn
  • Ψn
  • Ψ
  • Ψ
  • Ψn
  • f
  • u¨
  • r
  • n
  • Ψ
  • H^
  • Ψ
  • n
  • En
  • Ψ
  • Ψn
  • Ψn
  • Ψ
  • En
  • E1
  • n
  • En
  • Ψ
  • Ψn
  • Ψn
  • Ψ
  • E1
  • n
  • Ψ
  • Ψn
  • Ψn
  • Ψ
  • n
  • En
  • Ψ
  • Ψn
  • Ψn
  • Ψ
  • E1
  • Ψ
  • Ψ
  • E1
  • n
  • En
  • Ψ
  • Ψn
  • Ψn
  • Ψ
  • Ψ
  • Ψ
  • E1
  • Ψ
  • H^
  • Ψ
  • Ψ
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results