Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1762.25 on revision:1762

* Page found: Homöopolare chemische Bindung des Wasserstoffmoleküls (eq math.1762.25)

(force rerendering)

Occurrences on the following pages:

Hash: ba3ceef49506d4d723846f82e0de7f2f

TeX (original user input):

\begin{align}
& {{{\hat{H}}}^{(1)}}_{\alpha ,\alpha }=\left\langle  {{\Psi }_{\alpha }} \right|{{{\hat{H}}}^{(1)}}\left| {{\Psi }_{\alpha }} \right\rangle {{=}_{1}}{{\left\langle  a \right|}_{2}}\left\langle  b \right|{{{\hat{H}}}^{(1)}}{{\left| b \right\rangle }_{2}}{{\left| a \right\rangle }_{1}} \\
& \Rightarrow {{{\hat{H}}}^{(1)}}_{\alpha ,\alpha }=\int_{{}}^{{}}{{{d}^{3}}{{r}_{1}}\int_{{}}^{{}}{{}}{{d}^{3}}{{r}_{2}}{{\left| {{\Psi }_{a}}({{{\bar{r}}}_{1}}) \right|}^{2}}{{\left| {{\Psi }_{b}}({{{\bar{r}}}_{2}}) \right|}^{2}}{{{\hat{H}}}^{(1)}}=}{{{\hat{H}}}^{(1)}}_{\beta \beta } \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\hat {H}}^{(1)}}_{\alpha ,\alpha }=\left\langle {{\Psi }_{\alpha }}\right|{{\hat {H}}^{(1)}}\left|{{\Psi }_{\alpha }}\right\rangle {{=}_{1}}{{\left\langle a\right|}_{2}}\left\langle b\right|{{\hat {H}}^{(1)}}{{\left|b\right\rangle }_{2}}{{\left|a\right\rangle }_{1}}\\&\Rightarrow {{\hat {H}}^{(1)}}_{\alpha ,\alpha }=\int _{}^{}{{{d}^{3}}{{r}_{1}}\int _{}^{}{}{{d}^{3}}{{r}_{2}}{{\left|{{\Psi }_{a}}({{\bar {r}}_{1}})\right|}^{2}}{{\left|{{\Psi }_{b}}({{\bar {r}}_{2}})\right|}^{2}}{{\hat {H}}^{(1)}}=}{{\hat {H}}^{(1)}}_{\beta \beta }\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.224 KB / 613 B) :

H^(1)α,α=Ψα|H^(1)|Ψα=1a|2b|H^(1)|b2|a1H^(1)α,α=d3r1d3r2|Ψa(r¯1)|2|Ψb(r¯2)|2H^(1)=H^(1)ββ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B1;</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi><mo>,</mo><mi>&#x03B1;</mi></mrow></mrow></msub><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msub><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo></mrow><msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mi>&#x03B2;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Homöopolare chemische Bindung des Wasserstoffmoleküls page

Identifiers

  • H^α,α
  • Ψα
  • H^
  • Ψα
  • a2
  • b
  • H^
  • b2
  • a1
  • H^α,α
  • r1
  • r2
  • Ψa
  • r¯1
  • Ψb
  • r¯2
  • H^
  • H^ββ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results