Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1756.21 on revision:1756
* Page found: Stark Effekt im H- Atom (eq math.1756.21)
(force rerendering)Occurrences on the following pages:
Hash: 2ac16641de1e48257f3993640667a329
TeX (original user input):
\begin{align}
& {{d}_{13}}=\left\langle 200 \right|e{{{\hat{x}}}_{3}}\left| 210 \right\rangle \\
& =e\int_{0}^{\infty }{{}}{{d}^{3}}r{{r}^{2}}\frac{2}{{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}}\left( 1-\frac{r}{2{{a}_{0}}} \right){{e}^{-\frac{r}{2{{a}_{0}}}}}r\frac{1}{\sqrt{3}{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}{{a}_{0}}}r{{e}^{-\frac{r}{2{{a}_{0}}}}}\int_{0}^{2\pi }{d\phi \int_{0}^{\pi }{d\vartheta \sin \vartheta \sqrt{\frac{1}{4\pi }}\cos \vartheta \sqrt{\frac{3}{4\pi }}\cos \vartheta }} \\
& \frac{{{u}_{20}}(r)}{r}=\frac{2}{{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}}\left( 1-\frac{r}{2{{a}_{0}}} \right){{e}^{-\frac{r}{2{{a}_{0}}}}} \\
& \frac{{{u}_{21}}(r)}{r}=\frac{1}{\sqrt{3}{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}{{a}_{0}}}r{{e}^{-\frac{r}{2{{a}_{0}}}}} \\
& \sqrt{\frac{1}{4\pi }}={{Y}_{0}}^{0} \\
& \sqrt{\frac{3}{4\pi }}\cos \vartheta ={{Y}_{1}}^{0} \\
& \int_{0}^{2\pi }{d\phi \int_{0}^{\pi }{d\vartheta \sin \vartheta \sqrt{\frac{1}{4\pi }}\cos \vartheta \sqrt{\frac{3}{4\pi }}\cos \vartheta }}=\frac{1}{\sqrt{3}} \\
& \Rightarrow {{d}_{13}}=\left\langle 200 \right|e{{{\hat{x}}}_{3}}\left| 210 \right\rangle =\frac{e}{\sqrt{3}}\int_{0}^{\infty }{{}}{{d}^{3}}r{{r}^{2}}\frac{2}{{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}}\left( 1-\frac{r}{2{{a}_{0}}} \right){{e}^{-\frac{r}{2{{a}_{0}}}}}r\frac{1}{\sqrt{3}{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}{{a}_{0}}}r{{e}^{-\frac{r}{2{{a}_{0}}}}}=-3e{{a}_{0}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{d}_{13}}=\left\langle 200\right|e{{\hat {x}}_{3}}\left|210\right\rangle \\&=e\int _{0}^{\infty }{}{{d}^{3}}r{{r}^{2}}{\frac {2}{{\left(2{{a}_{0}}\right)}^{\frac {3}{2}}}}\left(1-{\frac {r}{2{{a}_{0}}}}\right){{e}^{-{\frac {r}{2{{a}_{0}}}}}}r{\frac {1}{{\sqrt {3}}{{\left(2{{a}_{0}}\right)}^{\frac {3}{2}}}{{a}_{0}}}}r{{e}^{-{\frac {r}{2{{a}_{0}}}}}}\int _{0}^{2\pi }{d\phi \int _{0}^{\pi }{d\vartheta \sin \vartheta {\sqrt {\frac {1}{4\pi }}}\cos \vartheta {\sqrt {\frac {3}{4\pi }}}\cos \vartheta }}\\&{\frac {{{u}_{20}}(r)}{r}}={\frac {2}{{\left(2{{a}_{0}}\right)}^{\frac {3}{2}}}}\left(1-{\frac {r}{2{{a}_{0}}}}\right){{e}^{-{\frac {r}{2{{a}_{0}}}}}}\\&{\frac {{{u}_{21}}(r)}{r}}={\frac {1}{{\sqrt {3}}{{\left(2{{a}_{0}}\right)}^{\frac {3}{2}}}{{a}_{0}}}}r{{e}^{-{\frac {r}{2{{a}_{0}}}}}}\\&{\sqrt {\frac {1}{4\pi }}}={{Y}_{0}}^{0}\\&{\sqrt {\frac {3}{4\pi }}}\cos \vartheta ={{Y}_{1}}^{0}\\&\int _{0}^{2\pi }{d\phi \int _{0}^{\pi }{d\vartheta \sin \vartheta {\sqrt {\frac {1}{4\pi }}}\cos \vartheta {\sqrt {\frac {3}{4\pi }}}\cos \vartheta }}={\frac {1}{\sqrt {3}}}\\&\Rightarrow {{d}_{13}}=\left\langle 200\right|e{{\hat {x}}_{3}}\left|210\right\rangle ={\frac {e}{\sqrt {3}}}\int _{0}^{\infty }{}{{d}^{3}}r{{r}^{2}}{\frac {2}{{\left(2{{a}_{0}}\right)}^{\frac {3}{2}}}}\left(1-{\frac {r}{2{{a}_{0}}}}\right){{e}^{-{\frac {r}{2{{a}_{0}}}}}}r{\frac {1}{{\sqrt {3}}{{\left(2{{a}_{0}}\right)}^{\frac {3}{2}}}{{a}_{0}}}}r{{e}^{-{\frac {r}{2{{a}_{0}}}}}}=-3e{{a}_{0}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (13.978 KB / 899 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mn>2</mn><mn>0</mn><mn>0</mn><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi>e</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>2</mn><mn>1</mn><mn>0</mn><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>e</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>3</mn></msqrt></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mi>r</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi></mrow></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ϕ</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>π</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ϑ</mi><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>0</mn></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mn>1</mn></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>3</mn></msqrt></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mi>r</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mo>=</mo><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><mo>=</mo><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>π</mi></mrow></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ϕ</mi><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>π</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ϑ</mi><mi>sin</mi><mo>⁡</mo><mi>ϑ</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>π</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mi>cos</mi><mo>⁡</mo><mi>ϑ</mi></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>3</mn></msqrt></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mn>3</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mn>2</mn><mn>0</mn><mn>0</mn><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi>e</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>2</mn><mn>1</mn><mn>0</mn><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>3</mn></msqrt></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">∞</mi></mrow></munderover></mstyle><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mn>3</mn></msqrt></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mi>r</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow></mrow></mrow></msup><mo>=</mo><mo>−</mo><mn>3</mn><mi>e</mi><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Stark Effekt im H- Atom page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results