Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1737.7 on revision:1737

* Page found: Induzierte Emission und Absorption von Lichtquanten in Atomen (eq math.1737.7)

(force rerendering)

Occurrences on the following pages:

Hash: 1d6adfbf8410f5cdb3def350df302eaa

TeX (original user input):

\begin{align}

& {{W}_{nn0}}=\frac{2\pi }{\hbar }{{\left| \left\langle  n \right|\hat{F}\left| {{n}_{0}} \right\rangle  \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+\frac{2\pi }{\hbar }{{\left| \left\langle  {{n}_{0}} \right|{{{\hat{F}}}^{+}}\left| n \right\rangle  \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega ) \\
& {{W}_{nn0}}=\frac{2\pi }{\hbar }{{\left( \frac{e}{2m} \right)}^{2}}\left\{ {{\left| \left\langle  n \right|{{e}^{i\bar{k}\bar{r}}}{{{\bar{A}}}_{0}}\hat{\bar{p}}\left| {{n}_{0}} \right\rangle  \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+{{\left| \left\langle  {{n}_{0}} \right|{{e}^{-i\bar{k}\bar{r}}}{{{\bar{A}}}_{0}}\hat{\bar{p}}\left| n \right\rangle  \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega ) \right\} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{W}_{nn0}}={\frac {2\pi }{\hbar }}{{\left|\left\langle n\right|{\hat {F}}\left|{{n}_{0}}\right\rangle \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+{\frac {2\pi }{\hbar }}{{\left|\left\langle {{n}_{0}}\right|{{\hat {F}}^{+}}\left|n\right\rangle \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega )\\&{{W}_{nn0}}={\frac {2\pi }{\hbar }}{{\left({\frac {e}{2m}}\right)}^{2}}\left\{{{\left|\left\langle n\right|{{e}^{i{\bar {k}}{\bar {r}}}}{{\bar {A}}_{0}}{\hat {\bar {p}}}\left|{{n}_{0}}\right\rangle \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+{{\left|\left\langle {{n}_{0}}\right|{{e}^{-i{\bar {k}}{\bar {r}}}}{{\bar {A}}_{0}}{\hat {\bar {p}}}\left|n\right\rangle \right|}^{2}}\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega )\right\}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.809 KB / 657 B) :

Wnn0=2π|n|F^|n0|2δ(EnEn0ω)+2π|n0|F^+|n|2δ(EnEn0+ω)Wnn0=2π(e2m)2{|n|eik¯r¯A¯0p¯^|n0|2δ(EnEn0ω)+|n0|eik¯r¯A¯0p¯^|n|2δ(EnEn0+ω)}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>W</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>W</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo>+</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Induzierte Emission und Absorption von Lichtquanten in Atomen page

Identifiers

  • Wnn0
  • π
  • n
  • F^
  • n0
  • δ
  • En
  • En0
  • ω
  • π
  • n0
  • F^
  • n
  • δ
  • En
  • En0
  • ω
  • Wnn0
  • π
  • e
  • m
  • n
  • e
  • i
  • k¯
  • r¯
  • A¯0
  • p¯^
  • n0
  • δ
  • En
  • En0
  • ω
  • n0
  • e
  • i
  • k¯
  • r¯
  • A¯0
  • p¯^
  • n
  • δ
  • En
  • En0
  • ω

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results