Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1737.27 on revision:1737

* Page found: Induzierte Emission und Absorption von Lichtquanten in Atomen (eq math.1737.27)

(force rerendering)

Occurrences on the following pages:

Hash: 544042cc8bf04bea2ce07d7553ac69cc

TeX (original user input):

\begin{align}
& {{\Psi }_{nlm}}(\bar{r})=\frac{{{u}_{nl}}(r)}{r}{{Y}_{l}}^{m}\left( \vartheta ,\phi  \right)\tilde{\ }{{P}_{l}}^{m}(\cos \vartheta ){{e}^{im\phi }} \\
& \left\langle  n\acute{\ }l\acute{\ }m\acute{\ } \right|\hat{\bar{\xi }}\left| nlm \right\rangle \tilde{\ }\int_{0}^{\pi }{d}\vartheta {{\sin }^{2}}\left( \vartheta  \right){{P}_{l\acute{\ }}}^{m\acute{\ }}(\cos \vartheta ){{P}_{l}}^{m}(\cos \vartheta )\int_{0}^{2\pi }{d}\phi {{e}^{i\left( m-m\acute{\ }+1 \right)\phi }} \\
& \int_{0}^{2\pi }{d}\phi {{e}^{i\left( m-m\acute{\ }+1 \right)\phi }}\tilde{\ }{{\delta }_{m\acute{\ },m+1}} \\
& \Rightarrow \left\langle  n\acute{\ }l\acute{\ }m\acute{\ } \right|\hat{\bar{\xi }}\left| nlm \right\rangle \tilde{\ }\int_{0}^{\pi }{d}\vartheta {{\sin }^{2}}\left( \vartheta  \right){{P}_{l\acute{\ }}}^{m+1}(\cos \vartheta ){{P}_{l}}^{m}(\cos \vartheta ) \\
& \int_{0}^{\pi }{d}\vartheta {{\sin }^{2}}\left( \vartheta  \right){{P}_{l\acute{\ }}}^{m+1}(\cos \vartheta ){{P}_{l}}^{m}(\cos \vartheta )\tilde{\ }{{\delta }_{l\acute{\ },l\pm 1}} \\
& \Rightarrow \left\langle  n\acute{\ }l\acute{\ }m\acute{\ } \right|\hat{\bar{\xi }}\left| nlm \right\rangle \tilde{\ }{{\delta }_{m\acute{\ },m+1}}{{\delta }_{l\acute{\ },l\pm 1}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\Psi }_{nlm}}({\bar {r}})={\frac {{{u}_{nl}}(r)}{r}}{{Y}_{l}}^{m}\left(\vartheta ,\phi \right){\tilde {\ }}{{P}_{l}}^{m}(\cos \vartheta ){{e}^{im\phi }}\\&\left\langle n{\acute {\ }}l{\acute {\ }}m{\acute {\ }}\right|{\hat {\bar {\xi }}}\left|nlm\right\rangle {\tilde {\ }}\int _{0}^{\pi }{d}\vartheta {{\sin }^{2}}\left(\vartheta \right){{P}_{l{\acute {\ }}}}^{m{\acute {\ }}}(\cos \vartheta ){{P}_{l}}^{m}(\cos \vartheta )\int _{0}^{2\pi }{d}\phi {{e}^{i\left(m-m{\acute {\ }}+1\right)\phi }}\\&\int _{0}^{2\pi }{d}\phi {{e}^{i\left(m-m{\acute {\ }}+1\right)\phi }}{\tilde {\ }}{{\delta }_{m{\acute {\ }},m+1}}\\&\Rightarrow \left\langle n{\acute {\ }}l{\acute {\ }}m{\acute {\ }}\right|{\hat {\bar {\xi }}}\left|nlm\right\rangle {\tilde {\ }}\int _{0}^{\pi }{d}\vartheta {{\sin }^{2}}\left(\vartheta \right){{P}_{l{\acute {\ }}}}^{m+1}(\cos \vartheta ){{P}_{l}}^{m}(\cos \vartheta )\\&\int _{0}^{\pi }{d}\vartheta {{\sin }^{2}}\left(\vartheta \right){{P}_{l{\acute {\ }}}}^{m+1}(\cos \vartheta ){{P}_{l}}^{m}(\cos \vartheta ){\tilde {\ }}{{\delta }_{l{\acute {\ }},l\pm 1}}\\&\Rightarrow \left\langle n{\acute {\ }}l{\acute {\ }}m{\acute {\ }}\right|{\hat {\bar {\xi }}}\left|nlm\right\rangle {\tilde {\ }}{{\delta }_{m{\acute {\ }},m+1}}{{\delta }_{l{\acute {\ }},l\pm 1}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (11.589 KB / 845 B) :

Ψnlm(r¯)=unl(r)rYlm(ϑ,ϕ)~Plm(cosϑ)eimϕn´l´m´|ξ¯^|nlm~0πdϑsin2(ϑ)Pl´m´(cosϑ)Plm(cosϑ)02πdϕei(mm´+1)ϕ02πdϕei(mm´+1)ϕ~δm´,m+1n´l´m´|ξ¯^|nlm~0πdϑsin2(ϑ)Pl´m+1(cosϑ)Plm(cosϑ)0πdϑsin2(ϑ)Pl´m+1(cosϑ)Plm(cosϑ)~δl´,l±1n´l´m´|ξ¯^|nlm~δm´,m+1δl´,l±1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>m</mi><mi>&#x03D5;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03D1;</mi><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></munderover></mstyle><mi>d</mi><mi>&#x03D5;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>m</mi><mo>&#x2212;</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03D5;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></munderover></mstyle><mi>d</mi><mi>&#x03D5;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>m</mi><mo>&#x2212;</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03D5;</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03D1;</mi><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03D1;</mi><msup><mi>sin</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><msup><msub><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>l</mi><mo>&#x00B1;</mo><mn>1</mn></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03BE;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>,</mo><mi>l</mi><mo>&#x00B1;</mo><mn>1</mn></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Induzierte Emission und Absorption von Lichtquanten in Atomen page

Identifiers

  • Ψnlm
  • r¯
  • unl
  • r
  • r
  • Yl
  • m
  • ϑ
  • ϕ
  • ~
  • Pl
  • m
  • ϑ
  • e
  • i
  • m
  • ϕ
  • n
  • ´
  • l
  • ´
  • m
  • ´
  • ξ¯^
  • n
  • l
  • m
  • ~
  • π
  • ϑ
  • ϑ
  • P
  • l
  • ´
  • m
  • ´
  • ϑ
  • Pl
  • m
  • ϑ
  • π
  • ϕ
  • e
  • i
  • m
  • m
  • ´
  • ϕ
  • π
  • ϕ
  • e
  • i
  • m
  • m
  • ´
  • ϕ
  • ~
  • δ
  • m
  • ´
  • m
  • n
  • ´
  • l
  • ´
  • m
  • ´
  • ξ¯^
  • n
  • l
  • m
  • ~
  • π
  • ϑ
  • ϑ
  • P
  • l
  • ´
  • m
  • ϑ
  • Pl
  • m
  • ϑ
  • π
  • ϑ
  • ϑ
  • P
  • l
  • ´
  • m
  • ϑ
  • Pl
  • m
  • ϑ
  • ~
  • δ
  • l
  • ´
  • l
  • n
  • ´
  • l
  • ´
  • m
  • ´
  • ξ¯^
  • n
  • l
  • m
  • ~
  • δ
  • m
  • ´
  • m
  • δ
  • l
  • ´
  • l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results