Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1737.20 on revision:1737

* Page found: Induzierte Emission und Absorption von Lichtquanten in Atomen (eq math.1737.20)

(force rerendering)

Occurrences on the following pages:

Hash: 40ff7cd36d0c9a86652e07f8f61c57aa

TeX (original user input):

\begin{align}
& {{W}_{nn0}}=\frac{\pi }{2{{\hbar }^{2}}}\int_{0}^{\infty }{d\left( \hbar \omega  \right)}{{\left( {{{\bar{E}}}_{0}}\left( \omega  \right)\cdot {{{\bar{d}}}_{nn0}} \right)}^{2}}\left\{ \delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega ) \right\} \\
& \Rightarrow {{W}_{nn0}}=\frac{\pi }{2{{\hbar }^{2}}}{{\left( {{{\bar{E}}}_{0}}\left( \frac{\left( \left| {{E}_{n}}-{{E}_{n0}} \right| \right)}{\hbar } \right)\cdot {{{\bar{d}}}_{nn0}} \right)}^{2}} \\
& {{{\bar{d}}}_{nn0}}=e\left\langle  n \right|\hat{\bar{r}}\left| {{n}_{0}} \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&{{W}_{nn0}}={\frac {\pi }{2{{\hbar }^{2}}}}\int _{0}^{\infty }{d\left(\hbar \omega \right)}{{\left({{\bar {E}}_{0}}\left(\omega \right)\cdot {{\bar {d}}_{nn0}}\right)}^{2}}\left\{\delta ({{E}_{n}}-{{E}_{n0}}-\hbar \omega )+\delta ({{E}_{n}}-{{E}_{n0}}+\hbar \omega )\right\}\\&\Rightarrow {{W}_{nn0}}={\frac {\pi }{2{{\hbar }^{2}}}}{{\left({{\bar {E}}_{0}}\left({\frac {\left(\left|{{E}_{n}}-{{E}_{n0}}\right|\right)}{\hbar }}\right)\cdot {{\bar {d}}_{nn0}}\right)}^{2}}\\&{{\bar {d}}_{nn0}}=e\left\langle n\right|{\hat {\bar {r}}}\left|{{n}_{0}}\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.288 KB / 672 B) :

Wnn0=π220d(ω)(E¯0(ω)d¯nn0)2{δ(EnEn0ω)+δ(EnEn0+ω)}Wnn0=π22(E¯0((|EnEn0|))d¯nn0)2d¯nn0=en|r¯^|n0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>W</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x22C5;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>d</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo>+</mo><mi>&#x03B4;</mi><mo stretchy="false">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>W</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03C0;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x22C5;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>d</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>d</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>=</mo><mi>e</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Induzierte Emission und Absorption von Lichtquanten in Atomen page

Identifiers

  • Wnn0
  • π
  • ω
  • E¯0
  • ω
  • d¯nn0
  • δ
  • En
  • En0
  • ω
  • δ
  • En
  • En0
  • ω
  • Wnn0
  • π
  • E¯0
  • En
  • En0
  • d¯nn0
  • d¯nn0
  • e
  • n
  • r¯^
  • n0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results