Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1732.82 on revision:1732

* Page found: Zeitabhängige Störungsrechnung (eq math.1732.82)

(force rerendering)

Occurrences on the following pages:

Hash: 79b02656cb096b0d8ab6ad4c8b3ad829

TeX (original user input):

\begin{align}
& {{g}_{n}}(t)=-\frac{i}{\hbar }\int_{0}^{t}{d\tau }{{e}^{\left( i\frac{\left( {{E}_{n}}-{{E}_{n0}}-\hbar \omega  \right)\tau }{\hbar } \right)}}\left\langle  n \right|\hat{F}\left| {{n}_{0}} \right\rangle -\frac{i}{\hbar }\int_{0}^{t}{d\tau }{{e}^{\left( i\frac{\left( {{E}_{n}}-{{E}_{n0}}+\hbar \omega  \right)\tau }{\hbar } \right)}}\left\langle  n \right|{{{\hat{F}}}^{+}}\left| {{n}_{0}} \right\rangle  \\
& \Rightarrow {{g}_{n}}(t)=-\left\langle  n \right|\hat{F}\left| {{n}_{0}} \right\rangle \left\{ \frac{{{e}^{\left( i\frac{\left( {{E}_{n}}-{{E}_{n0}}-\hbar \omega  \right)t}{\hbar } \right)-1}}}{{{E}_{n}}-{{E}_{n0}}-\hbar \omega } \right\}-\left\langle  n \right|{{{\hat{F}}}^{+}}\left| {{n}_{0}} \right\rangle \left\{ \frac{{{e}^{\left( i\frac{\left( {{E}_{n}}-{{E}_{n0}}+\hbar \omega  \right)t}{\hbar } \right)-1}}}{{{E}_{n}}-{{E}_{n0}}+\hbar \omega } \right\} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{g}_{n}}(t)=-{\frac {i}{\hbar }}\int _{0}^{t}{d\tau }{{e}^{\left(i{\frac {\left({{E}_{n}}-{{E}_{n0}}-\hbar \omega \right)\tau }{\hbar }}\right)}}\left\langle n\right|{\hat {F}}\left|{{n}_{0}}\right\rangle -{\frac {i}{\hbar }}\int _{0}^{t}{d\tau }{{e}^{\left(i{\frac {\left({{E}_{n}}-{{E}_{n0}}+\hbar \omega \right)\tau }{\hbar }}\right)}}\left\langle n\right|{{\hat {F}}^{+}}\left|{{n}_{0}}\right\rangle \\&\Rightarrow {{g}_{n}}(t)=-\left\langle n\right|{\hat {F}}\left|{{n}_{0}}\right\rangle \left\{{\frac {{e}^{\left(i{\frac {\left({{E}_{n}}-{{E}_{n0}}-\hbar \omega \right)t}{\hbar }}\right)-1}}{{{E}_{n}}-{{E}_{n0}}-\hbar \omega }}\right\}-\left\langle n\right|{{\hat {F}}^{+}}\left|{{n}_{0}}\right\rangle \left\{{\frac {{e}^{\left(i{\frac {\left({{E}_{n}}-{{E}_{n0}}+\hbar \omega \right)t}{\hbar }}\right)-1}}{{{E}_{n}}-{{E}_{n0}}+\hbar \omega }}\right\}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (7.723 KB / 657 B) :

gn(t)=i0tdτe(i(EnEn0ω)τ)n|F^|n0i0tdτe(i(EnEn0+ω)τ)n|F^+|n0gn(t)=n|F^|n0{e(i(EnEn0ω)t)1EnEn0ω}n|F^+|n0{e(i(EnEn0+ω)t)1EnEn0+ω}
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C4;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03C4;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>t</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>t</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mn>0</mn></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zeitabhängige Störungsrechnung page

Identifiers

  • gn
  • t
  • i
  • t
  • τ
  • e
  • i
  • En
  • En0
  • ω
  • τ
  • n
  • F^
  • n0
  • i
  • t
  • τ
  • e
  • i
  • En
  • En0
  • ω
  • τ
  • n
  • F^
  • n0
  • gn
  • t
  • n
  • F^
  • n0
  • e
  • i
  • En
  • En0
  • ω
  • t
  • En
  • En0
  • ω
  • n
  • F^
  • n0
  • e
  • i
  • En
  • En0
  • ω
  • t
  • En
  • En0
  • ω

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results