Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1720.87 on revision:1720
* Page found: Identische Teilchen: Spin und Statistik (eq math.1720.87)
(force rerendering)Occurrences on the following pages:
Hash: 59da5960c2bbe2c5fc67ce4513f59b21
TeX (original user input):
\begin{align}
& {{\left| {{\Psi }_{ab}}\left( \bar{r},\bar{r} \right) \right|}^{2}}={{\left| \left\langle \bar{r}\bar{r} \right|{{\left| ab \right\rangle }_{a}} \right|}^{2}}=\frac{1}{2}{{\left| _{1}\left\langle {\bar{r}} \right|{{\left| a \right\rangle }_{1}}_{2}\left\langle {\bar{r}} \right|{{\left| b \right\rangle }_{2}}{{-}_{1}}\left\langle _{1} \right|{{\left| a \right\rangle }_{1}}_{2}\left\langle {\bar{r}} \right|{{\left| b \right\rangle }_{2}} \right|}^{2}} \\
& =\frac{1}{2}{{\left| {{\Psi }_{a}}\left( {\bar{r}} \right){{\Psi }_{b}}\left( {\bar{r}} \right)-{{\Psi }_{b}}\left( {\bar{r}} \right){{\Psi }_{a}}\left( {\bar{r}} \right) \right|}^{2}}=0 \\
\end{align}
TeX (checked):
{\begin{aligned}&{{\left|{{\Psi }_{ab}}\left({\bar {r}},{\bar {r}}\right)\right|}^{2}}={{\left|\left\langle {\bar {r}}{\bar {r}}\right|{{\left|ab\right\rangle }_{a}}\right|}^{2}}={\frac {1}{2}}{{\left|_{1}\left\langle {\bar {r}}\right|{{\left|a\right\rangle }_{1}}_{2}\left\langle {\bar {r}}\right|{{\left|b\right\rangle }_{2}}{{-}_{1}}\left\langle _{1}\right|{{\left|a\right\rangle }_{1}}_{2}\left\langle {\bar {r}}\right|{{\left|b\right\rangle }_{2}}\right|}^{2}}\\&={\frac {1}{2}}{{\left|{{\Psi }_{a}}\left({\bar {r}}\right){{\Psi }_{b}}\left({\bar {r}}\right)-{{\Psi }_{b}}\left({\bar {r}}\right){{\Psi }_{a}}\left({\bar {r}}\right)\right|}^{2}}=0\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.55 KB / 547 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mi>b</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mi>b</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mo>−</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>b</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Identische Teilchen: Spin und Statistik page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results