Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1677.84 on revision:1677

* Page found: Kugelsymmetrische Potentiale (eq math.1677.84)

(force rerendering)

Occurrences on the following pages:

Hash: 6220912874dbb6dab13dc0c6ace63b5e

TeX (original user input):

\begin{align}

& \left\langle  {\hat{\bar{r}}} | nlm \right\rangle ={{\Psi }_{nlm}}(\bar{r})=\Psi (r,\vartheta ,\phi )={{R}_{nl}}(r){{Y}_{l}}^{m}(\vartheta ,\phi )=\frac{{{u}_{nl}}(r)}{r}{{Y}_{l}}^{m}(\vartheta ,\phi ) \\

& {{R}_{nl}}(r)=\frac{{{u}_{nl}}(r)}{r} \\

\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {\hat {\bar {r}}}|nlm\right\rangle ={{\Psi }_{nlm}}({\bar {r}})=\Psi (r,\vartheta ,\phi )={{R}_{nl}}(r){{Y}_{l}}^{m}(\vartheta ,\phi )={\frac {{{u}_{nl}}(r)}{r}}{{Y}_{l}}^{m}(\vartheta ,\phi )\\&{{R}_{nl}}(r)={\frac {{{u}_{nl}}(r)}{r}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.846 KB / 488 B) :

r¯^|nlm=Ψnlm(r¯)=Ψ(r,ϑ,ϕ)=Rnl(r)Ylm(ϑ,ϕ)=unl(r)rYlm(ϑ,ϕ)Rnl(r)=unl(r)r
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mo>|</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>R</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page

Identifiers

  • r¯^
  • n
  • l
  • m
  • Ψnlm
  • r¯
  • Ψ
  • r
  • ϑ
  • ϕ
  • Rnl
  • r
  • Yl
  • m
  • ϑ
  • ϕ
  • unl
  • r
  • r
  • Yl
  • m
  • ϑ
  • ϕ
  • Rnl
  • r
  • unl
  • r
  • r

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results