Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1677.79 on revision:1677

* Page found: Kugelsymmetrische Potentiale (eq math.1677.79)

(force rerendering)

Occurrences on the following pages:

Hash: 7050f0bdaf325286b1716b5b750fed55

TeX (original user input):

\begin{align}

& H\Psi =\left( \frac{{{p}^{2}}}{2m}+V(r) \right)\Psi =\left( \frac{\left( \bar{r}\cdot \bar{p} \right)\left[ \left( \bar{r}\cdot \bar{p} \right)+\frac{\hbar }{i} \right]}{2m{{r}^{2}}}+\frac{{{L}^{2}}}{2m{{r}^{2}}}+V(r) \right)\Psi  \\

& =H\Psi =\frac{1}{2m}\left[ -\frac{{{\hbar }^{2}}}{r}\frac{{{\partial }^{2}}}{\partial {{r}^{2}}}\left( r\Psi  \right) \right]+\frac{{{L}^{2}}}{2m{{r}^{2}}}\Psi +V(r)\Psi  \\

& -\frac{{{\hbar }^{2}}}{r}\frac{{{\partial }^{2}}}{\partial {{r}^{2}}}\left( r\Psi  \right)={{p}_{r}}^{2} \\

\end{align}

TeX (checked):

{\begin{aligned}&H\Psi =\left({\frac {{p}^{2}}{2m}}+V(r)\right)\Psi =\left({\frac {\left({\bar {r}}\cdot {\bar {p}}\right)\left[\left({\bar {r}}\cdot {\bar {p}}\right)+{\frac {\hbar }{i}}\right]}{2m{{r}^{2}}}}+{\frac {{L}^{2}}{2m{{r}^{2}}}}+V(r)\right)\Psi \\&=H\Psi ={\frac {1}{2m}}\left[-{\frac {{\hbar }^{2}}{r}}{\frac {{\partial }^{2}}{\partial {{r}^{2}}}}\left(r\Psi \right)\right]+{\frac {{L}^{2}}{2m{{r}^{2}}}}\Psi +V(r)\Psi \\&-{\frac {{\hbar }^{2}}{r}}{\frac {{\partial }^{2}}{\partial {{r}^{2}}}}\left(r\Psi \right)={{p}_{r}}^{2}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.274 KB / 616 B) :

HΨ=(p22m+V(r))Ψ=((r¯p¯)[(r¯p¯)+i]2mr2+L22mr2+V(r))Ψ=HΨ=12m[2r2r2(rΨ)]+L22mr2Ψ+V(r)Ψ2r2r2(rΨ)=pr2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>H</mi><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>H</mi><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mi mathvariant="normal">&#x03A8;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page

Identifiers

  • H
  • Ψ
  • p
  • m
  • V
  • r
  • Ψ
  • r¯
  • p¯
  • r¯
  • p¯
  • i
  • m
  • r
  • L
  • m
  • r
  • V
  • r
  • Ψ
  • H
  • Ψ
  • m
  • r
  • r
  • r
  • Ψ
  • L
  • m
  • r
  • Ψ
  • V
  • r
  • Ψ
  • r
  • r
  • r
  • Ψ
  • pr

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results