Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1677.79 on revision:1677
* Page found: Kugelsymmetrische Potentiale (eq math.1677.79)
(force rerendering)Occurrences on the following pages:
Hash: 7050f0bdaf325286b1716b5b750fed55
TeX (original user input):
\begin{align}
& H\Psi =\left( \frac{{{p}^{2}}}{2m}+V(r) \right)\Psi =\left( \frac{\left( \bar{r}\cdot \bar{p} \right)\left[ \left( \bar{r}\cdot \bar{p} \right)+\frac{\hbar }{i} \right]}{2m{{r}^{2}}}+\frac{{{L}^{2}}}{2m{{r}^{2}}}+V(r) \right)\Psi \\
& =H\Psi =\frac{1}{2m}\left[ -\frac{{{\hbar }^{2}}}{r}\frac{{{\partial }^{2}}}{\partial {{r}^{2}}}\left( r\Psi \right) \right]+\frac{{{L}^{2}}}{2m{{r}^{2}}}\Psi +V(r)\Psi \\
& -\frac{{{\hbar }^{2}}}{r}\frac{{{\partial }^{2}}}{\partial {{r}^{2}}}\left( r\Psi \right)={{p}_{r}}^{2} \\
\end{align}
TeX (checked):
{\begin{aligned}&H\Psi =\left({\frac {{p}^{2}}{2m}}+V(r)\right)\Psi =\left({\frac {\left({\bar {r}}\cdot {\bar {p}}\right)\left[\left({\bar {r}}\cdot {\bar {p}}\right)+{\frac {\hbar }{i}}\right]}{2m{{r}^{2}}}}+{\frac {{L}^{2}}{2m{{r}^{2}}}}+V(r)\right)\Psi \\&=H\Psi ={\frac {1}{2m}}\left[-{\frac {{\hbar }^{2}}{r}}{\frac {{\partial }^{2}}{\partial {{r}^{2}}}}\left(r\Psi \right)\right]+{\frac {{L}^{2}}{2m{{r}^{2}}}}\Psi +V(r)\Psi \\&-{\frac {{\hbar }^{2}}{r}}{\frac {{\partial }^{2}}{\partial {{r}^{2}}}}\left(r\Psi \right)={{p}_{r}}^{2}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.274 KB / 616 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>H</mi><mi mathvariant="normal">Ψ</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">Ψ</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">ℏ</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">Ψ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mi>H</mi><mi mathvariant="normal">Ψ</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>L</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mi mathvariant="normal">Ψ</mi><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mi mathvariant="normal">Ψ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results