Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1672.21 on revision:1672

* Page found: Ortsdarstellung des Bahndrehimpulses (eq math.1672.21)

(force rerendering)

Occurrences on the following pages:

Hash: 0e6ec2a958d8d0e7c75e574c7877b638

TeX (original user input):

\begin{align}

& {{Y}_{l}}^{m}(\vartheta ,\phi )=\frac{{{e}^{im\phi }}}{\sqrt{2\pi }}\cdot \frac{{{\left( -1 \right)}^{m}}}{{{2}^{l}}l!}\sqrt{\frac{\left( 2l+1 \right)\left( l-m \right)!}{2\left( l+m \right)!}}\frac{1}{{{\left( \sin \vartheta  \right)}^{m}}}\frac{{{d}^{l-m}}}{d{{\left( \cos \vartheta  \right)}^{l-m}}}{{\left( \sin \vartheta  \right)}^{2l}} \\

& {{Y}_{l}}^{m}(\vartheta ,\phi )=\frac{{{e}^{im\phi }}}{\sqrt{2\pi }}\cdot {{\left( -1 \right)}^{m}}\sqrt{\frac{\left( 2l+1 \right)\left( l-m \right)!}{2\left( l+m \right)!}}{{P}^{m}}_{l}(\cos \vartheta ) \\

\end{align}

TeX (checked):

{\begin{aligned}&{{Y}_{l}}^{m}(\vartheta ,\phi )={\frac {{e}^{im\phi }}{\sqrt {2\pi }}}\cdot {\frac {{\left(-1\right)}^{m}}{{{2}^{l}}l!}}{\sqrt {\frac {\left(2l+1\right)\left(l-m\right)!}{2\left(l+m\right)!}}}{\frac {1}{{\left(\sin \vartheta \right)}^{m}}}{\frac {{d}^{l-m}}{d{{\left(\cos \vartheta \right)}^{l-m}}}}{{\left(\sin \vartheta \right)}^{2l}}\\&{{Y}_{l}}^{m}(\vartheta ,\phi )={\frac {{e}^{im\phi }}{\sqrt {2\pi }}}\cdot {{\left(-1\right)}^{m}}{\sqrt {\frac {\left(2l+1\right)\left(l-m\right)!}{2\left(l+m\right)!}}}{{P}^{m}}_{l}(\cos \vartheta )\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.146 KB / 603 B) :

Ylm(ϑ,ϕ)=eimϕ2π(1)m2ll!(2l+1)(lm)!2(l+m)!1(sinϑ)mdlmd(cosϑ)lm(sinϑ)2lYlm(ϑ,ϕ)=eimϕ2π(1)m(2l+1)(lm)!2(l+m)!Pml(cosϑ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>m</mi><mi>&#x03D5;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><mi>l</mi><mi>!</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>l</mi><mo>&#x2212;</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>l</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>&#x2212;</mo><mi>m</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>&#x2212;</mo><mi>m</mi></mrow></mrow></msup></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>m</mi><mi>&#x03D5;</mi></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mo>&#x22C5;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>l</mi><mo>&#x2212;</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>l</mi><mo>+</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow></msqrt></mrow><msub><msup><mi>P</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo stretchy="false">(</mo><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Ortsdarstellung des Bahndrehimpulses page

Identifiers

  • Yl
  • m
  • ϑ
  • ϕ
  • e
  • i
  • m
  • ϕ
  • π
  • m
  • l
  • l
  • l
  • l
  • m
  • l
  • m
  • ϑ
  • m
  • d
  • l
  • m
  • d
  • ϑ
  • l
  • m
  • ϑ
  • l
  • Yl
  • m
  • ϑ
  • ϕ
  • e
  • i
  • m
  • ϕ
  • π
  • m
  • l
  • l
  • m
  • l
  • m
  • P
  • m
  • l
  • ϑ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results