Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1672.19 on revision:1672

* Page found: Ortsdarstellung des Bahndrehimpulses (eq math.1672.19)

(force rerendering)

Occurrences on the following pages:

Hash: eacd9938542276a9c4c6822df74a9ea6

TeX (original user input):

{{\Psi }_{l,l-1}}(\bar{r})\propto \left\langle  {\bar{r}} \right|{{\hat{L}}_{-}}\left| ll \right\rangle =\hbar {{e}^{i(l-1)\phi }}\left( -\frac{\partial }{\partial \vartheta }-l\cot \vartheta  \right){{f}_{ll}}(r,\vartheta )=\hbar {{e}^{i(l-1)\phi }}{{\left( \sin \vartheta  \right)}^{1-l}}\frac{\partial }{\partial \cos \vartheta }\left[ {{\left( \sin \vartheta  \right)}^{l}}{{f}_{ll}}(r,\vartheta  \right]

TeX (checked):

{{\Psi }_{l,l-1}}({\bar {r}})\propto \left\langle {\bar {r}}\right|{{\hat {L}}_{-}}\left|ll\right\rangle =\hbar {{e}^{i(l-1)\phi }}\left(-{\frac {\partial }{\partial \vartheta }}-l\cot \vartheta \right){{f}_{ll}}(r,\vartheta )=\hbar {{e}^{i(l-1)\phi }}{{\left(\sin \vartheta \right)}^{1-l}}{\frac {\partial }{\partial \cos \vartheta }}\left[{{\left(\sin \vartheta \right)}^{l}}{{f}_{ll}}(r,\vartheta \right]

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.18 KB / 536 B) :

Ψl,l1(r¯)r¯|L^|ll=ei(l1)ϕ(ϑlcotϑ)fll(r,ϑ)=ei(l1)ϕ(sinϑ)1lcosϑ[(sinϑ)lfll(r,ϑ]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mo>,</mo><mi>l</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msub></mstyle><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>&#x221D;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>l</mi><mi>l</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi data-mjx-alternate="1">&#x210F;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo stretchy="false">(</mo><mi>l</mi><mo>&#x2212;</mo><mn>1</mn><mo stretchy="false">)</mo><mi>&#x03D5;</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mi>l</mi><mi>cot</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo><mo>=</mo><mi data-mjx-alternate="1">&#x210F;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo stretchy="false">(</mo><mi>l</mi><mo>&#x2212;</mo><mn>1</mn><mo stretchy="false">)</mo><mi>&#x03D5;</mi></mrow></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><mi>l</mi></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Ortsdarstellung des Bahndrehimpulses page

Identifiers

  • Ψl,l1
  • r¯
  • r¯
  • L^
  • l
  • l
  • e
  • i
  • l
  • ϕ
  • ϑ
  • l
  • ϑ
  • fll
  • r
  • ϑ
  • e
  • i
  • l
  • ϕ
  • ϑ
  • l
  • ϑ
  • ϑ
  • l
  • fll
  • r
  • ϑ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results