Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1667.56 on revision:1667

* Page found: Drehimpuls- Eigenzustände (eq math.1667.56)

(force rerendering)

Occurrences on the following pages:

Hash: 9503dac3c2e1c3ba83997419b4369d67

TeX (original user input):

\begin{align}

& a=\left\langle  a,b \right|{{{\hat{L}}}^{2}}\left| a,b \right\rangle =\sum\limits_{i=1}^{3}{{}}\left\langle  a,b \right|{{{\hat{L}}}_{i}}^{+}{{{\hat{L}}}_{i}}\left| a,b \right\rangle  \\

& \left\langle  a,b \right|{{{\hat{L}}}_{i}}^{+}{{{\hat{L}}}_{i}}\left| a,b \right\rangle :=\left\langle  \Phi  | \Phi  \right\rangle \ge 0 \\

& a=\left\langle  a,b \right|{{{\hat{L}}}^{2}}\left| a,b \right\rangle =\sum\limits_{i=1}^{3}{{}}\left\langle  a,b \right|{{{\hat{L}}}_{i}}^{+}{{{\hat{L}}}_{i}}\left| a,b \right\rangle \ge \left\langle  a,b \right|{{{\hat{L}}}_{3}}^{2}\left| a,b \right\rangle \ge 0 \\

& \left\langle  a,b \right|{{{\hat{L}}}_{3}}^{2}\left| a,b \right\rangle ={{b}^{2}} \\

& \to \sqrt{a}\ge b\ge -\sqrt{a} \\

\end{align}

TeX (checked):

{\begin{aligned}&a=\left\langle a,b\right|{{\hat {L}}^{2}}\left|a,b\right\rangle =\sum \limits _{i=1}^{3}{}\left\langle a,b\right|{{\hat {L}}_{i}}^{+}{{\hat {L}}_{i}}\left|a,b\right\rangle \\&\left\langle a,b\right|{{\hat {L}}_{i}}^{+}{{\hat {L}}_{i}}\left|a,b\right\rangle :=\left\langle \Phi |\Phi \right\rangle \geq 0\\&a=\left\langle a,b\right|{{\hat {L}}^{2}}\left|a,b\right\rangle =\sum \limits _{i=1}^{3}{}\left\langle a,b\right|{{\hat {L}}_{i}}^{+}{{\hat {L}}_{i}}\left|a,b\right\rangle \geq \left\langle a,b\right|{{\hat {L}}_{3}}^{2}\left|a,b\right\rangle \geq 0\\&\left\langle a,b\right|{{\hat {L}}_{3}}^{2}\left|a,b\right\rangle ={{b}^{2}}\\&\to {\sqrt {a}}\geq b\geq -{\sqrt {a}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.603 KB / 563 B) :

a=a,b|L^2|a,b=i=13a,b|L^i+L^i|a,ba,b|L^i+L^i|a,b:=Φ|Φ0a=a,b|L^2|a,b=i=13a,b|L^i+L^i|a,ba,b|L^32|a,b0a,b|L^32|a,b=b2aba
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>a</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munderover><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></munderover><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="ORD"><msqrt><mi>a</mi></msqrt></mrow><mo>&#x2265;</mo><mi>b</mi><mo>&#x2265;</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><msqrt><mi>a</mi></msqrt></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpuls- Eigenzustände page

Identifiers

  • a
  • a
  • b
  • L^
  • a
  • b
  • i
  • a
  • b
  • L^i
  • L^i
  • a
  • b
  • a
  • b
  • L^i
  • L^i
  • a
  • b
  • Φ
  • Φ
  • a
  • a
  • b
  • L^
  • a
  • b
  • i
  • a
  • b
  • L^i
  • L^i
  • a
  • b
  • a
  • b
  • L^3
  • a
  • b
  • a
  • b
  • L^3
  • a
  • b
  • b
  • a
  • b
  • a

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results