Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1667.54 on revision:1667

* Page found: Drehimpuls- Eigenzustände (eq math.1667.54)

(force rerendering)

Occurrences on the following pages:

Hash: edc5c190dd0b20378307f5f9b228fff5

TeX (original user input):

\begin{align}

& {{{\hat{L}}}_{3}}{{\left( {{{\hat{L}}}_{+}} \right)}^{n}}\left| a,{{b}_{0}} \right\rangle =\left( {{b}_{0}}+n\hbar  \right){{\left( {{{\hat{L}}}_{+}} \right)}^{n}}\left| a,{{b}_{0}} \right\rangle  \\

& {{{\hat{L}}}_{3}}{{\left( {{{\hat{L}}}_{-}} \right)}^{m}}\left| a,{{b}_{0}} \right\rangle =\left( {{b}_{0}}-m\hbar  \right){{\left( {{{\hat{L}}}_{-}} \right)}^{m}}\left| a,{{b}_{0}} \right\rangle  \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\hat {L}}_{3}}{{\left({{\hat {L}}_{+}}\right)}^{n}}\left|a,{{b}_{0}}\right\rangle =\left({{b}_{0}}+n\hbar \right){{\left({{\hat {L}}_{+}}\right)}^{n}}\left|a,{{b}_{0}}\right\rangle \\&{{\hat {L}}_{3}}{{\left({{\hat {L}}_{-}}\right)}^{m}}\left|a,{{b}_{0}}\right\rangle =\left({{b}_{0}}-m\hbar \right){{\left({{\hat {L}}_{-}}\right)}^{m}}\left|a,{{b}_{0}}\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.45 KB / 434 B) :

L^3(L^+)n|a,b0=(b0+n)(L^+)n|a,b0L^3(L^)m|a,b0=(b0m)(L^)m|a,b0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><mi>n</mi><mi data-mjx-alternate="1">&#x210F;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>&#x2212;</mo><mi>m</mi><mi data-mjx-alternate="1">&#x210F;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpuls- Eigenzustände page

Identifiers

  • L^3
  • L^+
  • n
  • a
  • b0
  • b0
  • n
  • L^+
  • n
  • a
  • b0
  • L^3
  • L^
  • m
  • a
  • b0
  • b0
  • m
  • L^
  • m
  • a
  • b0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results