Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1661.88 on revision:1661

* Page found: Der harmonische Oszillator (eq math.1661.88)

(force rerendering)

Occurrences on the following pages:

Hash: ecca8847b87dcd71e359b2cd5bbf6a3c

TeX (original user input):

\begin{align}
& {{\phi }_{n}}(\xi )=\frac{1}{{{i}^{n}}}\frac{{{A}_{0}}}{\sqrt{{{2}^{n}}n!}}{{\left( -1 \right)}^{n}}{{e}^{\left( \frac{{{\xi }^{2}}}{2} \right)}}\frac{{{d}^{n}}}{{{\left( d\xi  \right)}^{n}}}{{e}^{-{{\xi }^{2}}}} \\
& \Rightarrow {{\phi }_{n}}(\xi )=\frac{{{\left( \frac{m\omega }{\hbar \pi } \right)}^{\frac{1}{4}}}}{\sqrt{{{\left( -2 \right)}^{n}}n!}}{{H}_{n}}(\xi ){{e}^{-\frac{{{\xi }^{2}}}{2}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\phi }_{n}}(\xi )={\frac {1}{{i}^{n}}}{\frac {{A}_{0}}{\sqrt {{{2}^{n}}n!}}}{{\left(-1\right)}^{n}}{{e}^{\left({\frac {{\xi }^{2}}{2}}\right)}}{\frac {{d}^{n}}{{\left(d\xi \right)}^{n}}}{{e}^{-{{\xi }^{2}}}}\\&\Rightarrow {{\phi }_{n}}(\xi )={\frac {{\left({\frac {m\omega }{\hbar \pi }}\right)}^{\frac {1}{4}}}{\sqrt {{{\left(-2\right)}^{n}}n!}}}{{H}_{n}}(\xi ){{e}^{-{\frac {{\xi }^{2}}{2}}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.963 KB / 576 B) :

ϕn(ξ)=1inA02nn!(1)ne(ξ22)dn(dξ)neξ2ϕn(ξ)=(mωπ)14(2)nn!Hn(ξ)eξ22
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>i</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mi>n</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>&#x03BE;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>&#x03C9;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mi>n</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der harmonische Oszillator page

Identifiers

  • ϕn
  • ξ
  • i
  • n
  • A0
  • n
  • n
  • n
  • e
  • ξ
  • d
  • n
  • d
  • ξ
  • n
  • e
  • ξ
  • ϕn
  • ξ
  • m
  • ω
  • π
  • n
  • n
  • Hn
  • ξ
  • e
  • ξ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results