Zur Navigation springen
Zur Suche springen
General
Display information for equation id:math.1661.84 on revision:1661
* Page found: Der harmonische Oszillator (eq math.1661.84)
(force rerendering)Occurrences on the following pages:
Hash: 6fe3479b20c45bba01b561e01ede8862
TeX (original user input):
\begin{align}
& {{\phi }_{1}}(\xi )={{a}^{+}}{{\phi }_{0}}(\xi )=\frac{1}{i\sqrt{2}}\left( \xi -\frac{d}{d\xi } \right){{\phi }_{0}}(\xi )=-\frac{1}{i\sqrt{2}}{{e}^{\left( \frac{{{\xi }^{2}}}{2} \right)}}\frac{d}{d\xi }\left( {{e}^{\left( -\frac{{{\xi }^{2}}}{2} \right)}}{{\phi }_{0}}(\xi ) \right) \\
& \Rightarrow {{\phi }_{1}}(\xi )=-\frac{1}{i\sqrt{2}}{{e}^{\left( \frac{{{\xi }^{2}}}{2} \right)}}\frac{d}{d\xi }\left( {{A}_{0}}{{e}^{\left( -{{\xi }^{2}} \right)}} \right) \\
& {{A}_{0}}={{\left( \frac{m\omega }{\hbar \pi } \right)}^{\frac{1}{4}}} \\
\end{align}
TeX (checked):
{\begin{aligned}&{{\phi }_{1}}(\xi )={{a}^{+}}{{\phi }_{0}}(\xi )={\frac {1}{i{\sqrt {2}}}}\left(\xi -{\frac {d}{d\xi }}\right){{\phi }_{0}}(\xi )=-{\frac {1}{i{\sqrt {2}}}}{{e}^{\left({\frac {{\xi }^{2}}{2}}\right)}}{\frac {d}{d\xi }}\left({{e}^{\left(-{\frac {{\xi }^{2}}{2}}\right)}}{{\phi }_{0}}(\xi )\right)\\&\Rightarrow {{\phi }_{1}}(\xi )=-{\frac {1}{i{\sqrt {2}}}}{{e}^{\left({\frac {{\xi }^{2}}{2}}\right)}}{\frac {d}{d\xi }}\left({{A}_{0}}{{e}^{\left(-{{\xi }^{2}}\right)}}\right)\\&{{A}_{0}}={{\left({\frac {m\omega }{\hbar \pi }}\right)}^{\frac {1}{4}}}\\\end{aligned}}
LaTeXML (experimentell; verwendet MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimentell; keine Bilder) rendering
MathML (5.169 KB / 561 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>ξ</mi><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ξ</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ξ</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><msub><mi>ϕ</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>ξ</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>ξ</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><msup><mi>ξ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>ω</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">ℏ</mi><mi>π</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der harmonische Oszillator page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results