Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1661.84 on revision:1661

* Page found: Der harmonische Oszillator (eq math.1661.84)

(force rerendering)

Occurrences on the following pages:

Hash: 6fe3479b20c45bba01b561e01ede8862

TeX (original user input):

\begin{align}
& {{\phi }_{1}}(\xi )={{a}^{+}}{{\phi }_{0}}(\xi )=\frac{1}{i\sqrt{2}}\left( \xi -\frac{d}{d\xi } \right){{\phi }_{0}}(\xi )=-\frac{1}{i\sqrt{2}}{{e}^{\left( \frac{{{\xi }^{2}}}{2} \right)}}\frac{d}{d\xi }\left( {{e}^{\left( -\frac{{{\xi }^{2}}}{2} \right)}}{{\phi }_{0}}(\xi ) \right) \\
& \Rightarrow {{\phi }_{1}}(\xi )=-\frac{1}{i\sqrt{2}}{{e}^{\left( \frac{{{\xi }^{2}}}{2} \right)}}\frac{d}{d\xi }\left( {{A}_{0}}{{e}^{\left( -{{\xi }^{2}} \right)}} \right) \\
& {{A}_{0}}={{\left( \frac{m\omega }{\hbar \pi } \right)}^{\frac{1}{4}}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\phi }_{1}}(\xi )={{a}^{+}}{{\phi }_{0}}(\xi )={\frac {1}{i{\sqrt {2}}}}\left(\xi -{\frac {d}{d\xi }}\right){{\phi }_{0}}(\xi )=-{\frac {1}{i{\sqrt {2}}}}{{e}^{\left({\frac {{\xi }^{2}}{2}}\right)}}{\frac {d}{d\xi }}\left({{e}^{\left(-{\frac {{\xi }^{2}}{2}}\right)}}{{\phi }_{0}}(\xi )\right)\\&\Rightarrow {{\phi }_{1}}(\xi )=-{\frac {1}{i{\sqrt {2}}}}{{e}^{\left({\frac {{\xi }^{2}}{2}}\right)}}{\frac {d}{d\xi }}\left({{A}_{0}}{{e}^{\left(-{{\xi }^{2}}\right)}}\right)\\&{{A}_{0}}={{\left({\frac {m\omega }{\hbar \pi }}\right)}^{\frac {1}{4}}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (5.169 KB / 561 B) :

ϕ1(ξ)=a+ϕ0(ξ)=1i2(ξddξ)ϕ0(ξ)=1i2e(ξ22)ddξ(e(ξ22)ϕ0(ξ))ϕ1(ξ)=1i2e(ξ22)ddξ(A0e(ξ2))A0=(mωπ)14
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BE;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03BE;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03BE;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>&#x03BE;</mi><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="ORD"><msqrt><mn>2</mn></msqrt></mrow></mrow></mrow></mfrac></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03BE;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><msup><mi>&#x03BE;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>A</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>m</mi><mi>&#x03C9;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C0;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der harmonische Oszillator page

Identifiers

  • ϕ1
  • ξ
  • a
  • ϕ0
  • ξ
  • i
  • ξ
  • d
  • d
  • ξ
  • ϕ0
  • ξ
  • i
  • e
  • ξ
  • d
  • d
  • ξ
  • e
  • ξ
  • ϕ0
  • ξ
  • ϕ1
  • ξ
  • i
  • e
  • ξ
  • d
  • d
  • ξ
  • A0
  • e
  • ξ
  • A0
  • m
  • ω
  • π

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results