Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1661.50 on revision:1661

* Page found: Der harmonische Oszillator (eq math.1661.50)

(force rerendering)

Occurrences on the following pages:

Hash: af9d76b3364f9d61027f16c7f6483621

TeX (original user input):

\begin{align}

& 1=!=\left\langle  n | n \right\rangle ={{\left| {{\alpha }_{n}} \right|}^{2}}\left\langle  0 \right|{{a}^{n}}{{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle  \\
& \left\langle  0 \right|{{a}^{n}}{{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle =\left\langle  0 \right|{{a}^{n-1}}\left( {{\left( {{a}^{+}} \right)}^{n}}a+\left[ a,{{\left( {{a}^{+}} \right)}^{n}} \right] \right)\left| 0 \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&1=!=\left\langle n|n\right\rangle ={{\left|{{\alpha }_{n}}\right|}^{2}}\left\langle 0\right|{{a}^{n}}{{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle \\&\left\langle 0\right|{{a}^{n}}{{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle =\left\langle 0\right|{{a}^{n-1}}\left({{\left({{a}^{+}}\right)}^{n}}a+\left[a,{{\left({{a}^{+}}\right)}^{n}}\right]\right)\left|0\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.132 KB / 455 B) :

1=!=n|n=|αn|20|an(a+)n|00|an(a+)n|0=0|an1((a+)na+[a,(a+)n])|0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mn>1</mn><mo>=</mo><mi>!</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo>|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mi>a</mi><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>a</mi><mo>,</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der harmonische Oszillator page

Identifiers

  • n
  • n
  • αn
  • a
  • n
  • a
  • n
  • a
  • n
  • a
  • n
  • a
  • n
  • a
  • n
  • a
  • a
  • a
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results