Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1661.45 on revision:1661

* Page found: Der harmonische Oszillator (eq math.1661.45)

(force rerendering)

Occurrences on the following pages:

Hash: 7cf944ac7427204500df210831957a9f

TeX (original user input):

\begin{align}

& \hat{H}{{\left( {{a}^{+}} \right)}^{n+1}}\left| 0 \right\rangle =\left( {{a}^{+}}\hat{H}+\hbar \omega {{a}^{+}} \right){{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle ={{a}^{+}}\left( \hat{H}+\hbar \omega  \right){{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle  \\

& \left( \hat{H}+\hbar \omega  \right){{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle =\left( \hbar \omega \left( n+\frac{1}{2} \right)+\hbar \omega  \right){{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle  \\

& \Rightarrow \hat{H}{{\left( {{a}^{+}} \right)}^{n+1}}\left| 0 \right\rangle ={{a}^{+}}\left( \hat{H}+\hbar \omega  \right){{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle =\hbar \omega \left( n+1+\frac{1}{2} \right){{\left( {{a}^{+}} \right)}^{n+1}}\left| 0 \right\rangle  \\

\end{align}

TeX (checked):

{\begin{aligned}&{\hat {H}}{{\left({{a}^{+}}\right)}^{n+1}}\left|0\right\rangle =\left({{a}^{+}}{\hat {H}}+\hbar \omega {{a}^{+}}\right){{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle ={{a}^{+}}\left({\hat {H}}+\hbar \omega \right){{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle \\&\left({\hat {H}}+\hbar \omega \right){{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle =\left(\hbar \omega \left(n+{\frac {1}{2}}\right)+\hbar \omega \right){{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle \\&\Rightarrow {\hat {H}}{{\left({{a}^{+}}\right)}^{n+1}}\left|0\right\rangle ={{a}^{+}}\left({\hat {H}}+\hbar \omega \right){{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle =\hbar \omega \left(n+1+{\frac {1}{2}}\right){{\left({{a}^{+}}\right)}^{n+1}}\left|0\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.057 KB / 501 B) :

H^(a+)n+1|0=(a+H^+ωa+)(a+)n|0=a+(H^+ω)(a+)n|0(H^+ω)(a+)n|0=(ω(n+12)+ω)(a+)n|0H^(a+)n+1|0=a+(H^+ω)(a+)n|0=ω(n+1+12)(a+)n+1|0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>n</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der harmonische Oszillator page

Identifiers

  • H^
  • a
  • n
  • a
  • H^
  • ω
  • a
  • a
  • n
  • a
  • H^
  • ω
  • a
  • n
  • H^
  • ω
  • a
  • n
  • ω
  • n
  • ω
  • a
  • n
  • H^
  • a
  • n
  • a
  • H^
  • ω
  • a
  • n
  • ω
  • n
  • a
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results