Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1661.27 on revision:1661

* Page found: Der harmonische Oszillator (eq math.1661.27)

(force rerendering)

Occurrences on the following pages:

Hash: 24bdb546193c652a67a0df31cd001726

TeX (original user input):

\hat{H}a\left| E \right\rangle =\left( a\hat{H}-\hbar \omega  \right)a\left| E \right\rangle =a\left( \hat{H}-\hbar \omega  \right)\left| E \right\rangle =a\left( E-\hbar \omega  \right)\left| E \right\rangle =\left( E-\hbar \omega  \right)a\left| E \right\rangle

TeX (checked):

{\hat {H}}a\left|E\right\rangle =\left(a{\hat {H}}-\hbar \omega \right)a\left|E\right\rangle =a\left({\hat {H}}-\hbar \omega \right)\left|E\right\rangle =a\left(E-\hbar \omega \right)\left|E\right\rangle =\left(E-\hbar \omega \right)a\left|E\right\rangle

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (1.942 KB / 310 B) :

H^a|E=(aH^ω)a|E=a(H^ω)|E=a(Eω)|E=(Eω)a|E
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>E</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>a</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>E</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>E</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>E</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>E</mi><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mi>&#x03C9;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>E</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der harmonische Oszillator page

Identifiers

  • H^
  • a
  • E
  • a
  • H^
  • ω
  • a
  • E
  • a
  • H^
  • ω
  • E
  • a
  • E
  • ω
  • E
  • E
  • ω
  • a
  • E

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results