Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1649.61 on revision:1649

* Page found: Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild (eq math.1649.61)

(force rerendering)

Occurrences on the following pages:

Hash: 6fd49a3ed6fb80d0d92f780edcf0e332

TeX (original user input):

\begin{align}
& \left\langle {{{\hat{F}}}_{S}} \right\rangle ={{\left\langle  \Psi  \right|}_{t}}{{{\hat{F}}}_{S}}{{\left| \Psi  \right\rangle }_{t}}={{\left\langle  \Psi  \right|}_{t}}{{e}^{-\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}{{e}^{+\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}{{{\hat{F}}}_{S}}{{e}^{-\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}{{e}^{+\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}{{\left| \Psi  \right\rangle }_{t}} \\
& {{\left\langle  \Psi  \right|}_{t}}{{e}^{-\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}={{\left\langle  \Psi  \right|}_{W}} \\
& {{e}^{+\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}{{{\hat{F}}}_{S}}{{e}^{-\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}={{{\hat{F}}}_{W}}(t) \\
& {{e}^{+\frac{i}{\hbar }{{{\hat{H}}}^{0}}t}}{{\left| \Psi  \right\rangle }_{0}}={{\left| \Psi  \right\rangle }_{W}} \\
& \left\langle {{{\hat{F}}}_{S}} \right\rangle ={{\left\langle  \Psi  \right|}_{W}}{{{\hat{F}}}_{W}}(t){{\left| \Psi  \right\rangle }_{W}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {{\hat {F}}_{S}}\right\rangle ={{\left\langle \Psi \right|}_{t}}{{\hat {F}}_{S}}{{\left|\Psi \right\rangle }_{t}}={{\left\langle \Psi \right|}_{t}}{{e}^{-{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}{{e}^{+{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}{{\hat {F}}_{S}}{{e}^{-{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}{{e}^{+{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}{{\left|\Psi \right\rangle }_{t}}\\&{{\left\langle \Psi \right|}_{t}}{{e}^{-{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}={{\left\langle \Psi \right|}_{W}}\\&{{e}^{+{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}{{\hat {F}}_{S}}{{e}^{-{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}={{\hat {F}}_{W}}(t)\\&{{e}^{+{\frac {i}{\hbar }}{{\hat {H}}^{0}}t}}{{\left|\Psi \right\rangle }_{0}}={{\left|\Psi \right\rangle }_{W}}\\&\left\langle {{\hat {F}}_{S}}\right\rangle ={{\left\langle \Psi \right|}_{W}}{{\hat {F}}_{W}}(t){{\left|\Psi \right\rangle }_{W}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (7.893 KB / 577 B) :

F^S=Ψ|tF^S|Ψt=Ψ|teiH^0te+iH^0tF^SeiH^0te+iH^0t|ΨtΨ|teiH^0t=Ψ|We+iH^0tF^SeiH^0t=F^W(t)e+iH^0t|Ψ0=|ΨWF^S=Ψ|WF^W(t)|ΨW
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild page

Identifiers

  • F^S
  • Ψt
  • F^S
  • Ψt
  • Ψt
  • e
  • i
  • H^
  • t
  • e
  • i
  • H^
  • t
  • F^S
  • e
  • i
  • H^
  • t
  • e
  • i
  • H^
  • t
  • Ψt
  • Ψt
  • e
  • i
  • H^
  • t
  • ΨW
  • e
  • i
  • H^
  • t
  • F^S
  • e
  • i
  • H^
  • t
  • F^W
  • t
  • e
  • i
  • H^
  • t
  • Ψ0
  • ΨW
  • F^S
  • ΨW
  • F^W
  • t
  • ΨW

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results