Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1649.48 on revision:1649

* Page found: Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild (eq math.1649.48)

(force rerendering)

Occurrences on the following pages:

Hash: abdffb3e14da181b80f0c1fca4dab334

TeX (original user input):

\frac{d}{dt}{{\hat{F}}_{H}}(t)=\frac{i}{\hbar }\hat{H}{{e}^{\frac{i}{\hbar }\hat{H}t}}{{\hat{F}}_{S}}{{e}^{-\frac{i}{\hbar }\hat{H}t}}+{{e}^{\frac{i}{\hbar }\hat{H}t}}{{\hat{F}}_{S}}\left( -\frac{i}{\hbar }\hat{H} \right){{e}^{-\frac{i}{\hbar }\hat{H}t}}

TeX (checked):

{\frac {d}{dt}}{{\hat {F}}_{H}}(t)={\frac {i}{\hbar }}{\hat {H}}{{e}^{{\frac {i}{\hbar }}{\hat {H}}t}}{{\hat {F}}_{S}}{{e}^{-{\frac {i}{\hbar }}{\hat {H}}t}}+{{e}^{{\frac {i}{\hbar }}{\hat {H}}t}}{{\hat {F}}_{S}}\left(-{\frac {i}{\hbar }}{\hat {H}}\right){{e}^{-{\frac {i}{\hbar }}{\hat {H}}t}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.178 KB / 374 B) :

ddtF^H(t)=iH^eiH^tF^SeiH^t+eiH^tF^S(iH^)eiH^t
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>H</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>t</mi></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>t</mi></mrow></mrow></msup><mo>+</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>t</mi></mrow></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi>t</mi></mrow></mrow></msup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild page

Identifiers

  • d
  • d
  • t
  • F^H
  • t
  • i
  • H^
  • e
  • i
  • H^
  • t
  • F^S
  • e
  • i
  • H^
  • t
  • e
  • i
  • H^
  • t
  • F^S
  • i
  • H^
  • e
  • i
  • H^
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results