Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1649.11 on revision:1649

* Page found: Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild (eq math.1649.11)

(force rerendering)

Occurrences on the following pages:

Hash: 34cc83e8666eabc1445538d907463da4

TeX (original user input):

\begin{align}
& \frac{d}{dt}\left\langle {\hat{F}} \right\rangle =\frac{d}{dt}{{\left\langle  \Psi  \right|}_{t}}\hat{F}{{\left| \Psi  \right\rangle }_{t}}={{\left\langle  \Psi  \right|}_{t}}\frac{\partial \hat{F}}{\partial t}{{\left| \Psi  \right\rangle }_{t}}+\left( \frac{\partial }{\partial t}{{\left\langle  \Psi  \right|}_{t}} \right)\frac{d}{dt}\hat{F}{{\left| \Psi  \right\rangle }_{t}}+{{\left\langle  \Psi  \right|}_{t}}\hat{F}\left( \frac{\partial }{\partial t}{{\left| \Psi  \right\rangle }_{t}} \right) \\
& \left( \frac{\partial }{\partial t}{{\left\langle  \Psi  \right|}_{t}} \right)=-\frac{1}{i\hbar }{{\left\langle  \Psi  \right|}_{t}}\hat{H} \\
& \frac{\partial }{\partial t}{{\left| \Psi  \right\rangle }_{t}}=\frac{1}{i\hbar }\hat{H}{{\left| \Psi  \right\rangle }_{t}} \\
\end{align}

TeX (checked):

{\begin{aligned}&{\frac {d}{dt}}\left\langle {\hat {F}}\right\rangle ={\frac {d}{dt}}{{\left\langle \Psi \right|}_{t}}{\hat {F}}{{\left|\Psi \right\rangle }_{t}}={{\left\langle \Psi \right|}_{t}}{\frac {\partial {\hat {F}}}{\partial t}}{{\left|\Psi \right\rangle }_{t}}+\left({\frac {\partial }{\partial t}}{{\left\langle \Psi \right|}_{t}}\right){\frac {d}{dt}}{\hat {F}}{{\left|\Psi \right\rangle }_{t}}+{{\left\langle \Psi \right|}_{t}}{\hat {F}}\left({\frac {\partial }{\partial t}}{{\left|\Psi \right\rangle }_{t}}\right)\\&\left({\frac {\partial }{\partial t}}{{\left\langle \Psi \right|}_{t}}\right)=-{\frac {1}{i\hbar }}{{\left\langle \Psi \right|}_{t}}{\hat {H}}\\&{\frac {\partial }{\partial t}}{{\left|\Psi \right\rangle }_{t}}={\frac {1}{i\hbar }}{\hat {H}}{{\left|\Psi \right\rangle }_{t}}\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (6.342 KB / 548 B) :

ddtF^=ddtΨ|tF^|Ψt=Ψ|tF^t|Ψt+(tΨ|t)ddtF^|Ψt+Ψ|tF^(t|Ψt)(tΨ|t)=1iΨ|tH^t|Ψt=1iH^|Ψt
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamik im Schrödinger- Heisenberg- und Wechselwirkungsbild page

Identifiers

  • d
  • d
  • t
  • F^
  • d
  • d
  • t
  • Ψt
  • F^
  • Ψt
  • Ψt
  • F^
  • t
  • Ψt
  • t
  • Ψt
  • d
  • d
  • t
  • F^
  • Ψt
  • Ψt
  • F^
  • t
  • Ψt
  • t
  • Ψt
  • i
  • Ψt
  • H^
  • t
  • Ψt
  • i
  • H^
  • Ψt

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results