Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1632.6 on revision:1632

* Page found: Eigenwerte und Eigenzustände von hermiteschen Operatoren (eq math.1632.6)

(force rerendering)

Occurrences on the following pages:

Hash: a931bbf007c0fb3a31f1ef7840e54825

TeX (original user input):

\begin{align}
& {{\left| \left\langle  \Phi  | \Psi  \right\rangle  \right|}^{2}}\le {{\left\| \Phi  \right\|}^{2}}{{\left\| \Psi  \right\|}^{2}} \\
& {{\left\| \Psi  \right\|}^{2}}=1 \\
& \Rightarrow {{\left\| \Phi  \right\|}^{2}}{{\left\| \Psi  \right\|}^{2}}={{\left\| \Phi  \right\|}^{2}}=\left\langle  \Phi  | \Phi  \right\rangle  \\
& {{\left| \left\langle  \Phi  | \Psi  \right\rangle  \right|}^{2}}\le \left\langle  \Phi  | \Phi  \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\left|\left\langle \Phi |\Psi \right\rangle \right|}^{2}}\leq {{\left\|\Phi \right\|}^{2}}{{\left\|\Psi \right\|}^{2}}\\&{{\left\|\Psi \right\|}^{2}}=1\\&\Rightarrow {{\left\|\Phi \right\|}^{2}}{{\left\|\Psi \right\|}^{2}}={{\left\|\Phi \right\|}^{2}}=\left\langle \Phi |\Phi \right\rangle \\&{{\left|\left\langle \Phi |\Psi \right\rangle \right|}^{2}}\leq \left\langle \Phi |\Phi \right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.085 KB / 412 B) :

|Φ|Ψ|2Φ2Ψ2Ψ2=1Φ2Ψ2=Φ2=Φ|Φ|Φ|Ψ|2Φ|Φ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2264;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x2016;</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x2016;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x2016;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x2016;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x2016;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x2016;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x2016;</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x2016;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x2016;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x2016;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x2016;</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x2016;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2264;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Eigenwerte und Eigenzustände von hermiteschen Operatoren page

Identifiers

  • Φ
  • Ψ
  • Φ
  • Ψ
  • Ψ
  • Φ
  • Ψ
  • Φ
  • Φ
  • Φ
  • Φ
  • Ψ
  • Φ
  • Φ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results