Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1626.49 on revision:1626

* Page found: Operatoren im Hilbertraum (eq math.1626.49)

(force rerendering)

Occurrences on the following pages:

Hash: 5b1aadc840f20ff448a08a47713d42c3

TeX (original user input):

\begin{align}

& \left| \Psi  \right\rangle ={{\lambda }_{1}}\left| {{\Psi }_{1}} \right\rangle +{{\lambda }_{2}}\left| {{\Psi }_{2}} \right\rangle  \\

& \Rightarrow \hat{F}\left( {{\lambda }_{1}}\left| {{\Psi }_{1}} \right\rangle +{{\lambda }_{2}}\left| {{\Psi }_{2}} \right\rangle  \right)={{\lambda }_{1}}\hat{F}\left| {{\Psi }_{1}} \right\rangle +{{\lambda }_{2}}\hat{F}\left| {{\Psi }_{2}} \right\rangle  \\

\end{align}

TeX (checked):

{\begin{aligned}&\left|\Psi \right\rangle ={{\lambda }_{1}}\left|{{\Psi }_{1}}\right\rangle +{{\lambda }_{2}}\left|{{\Psi }_{2}}\right\rangle \\&\Rightarrow {\hat {F}}\left({{\lambda }_{1}}\left|{{\Psi }_{1}}\right\rangle +{{\lambda }_{2}}\left|{{\Psi }_{2}}\right\rangle \right)={{\lambda }_{1}}{\hat {F}}\left|{{\Psi }_{1}}\right\rangle +{{\lambda }_{2}}{\hat {F}}\left|{{\Psi }_{2}}\right\rangle \\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (2.833 KB / 407 B) :

|Ψ=λ1|Ψ1+λ2|Ψ2F^(λ1|Ψ1+λ2|Ψ2)=λ1F^|Ψ1+λ2F^|Ψ2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Operatoren im Hilbertraum page

Identifiers

  • Ψ
  • λ1
  • Ψ1
  • λ2
  • Ψ2
  • F^
  • λ1
  • Ψ1
  • λ2
  • Ψ2
  • λ1
  • F^
  • Ψ1
  • λ2
  • F^
  • Ψ2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results