Zur Navigation springen Zur Suche springen

General

Display information for equation id:math.1619.41 on revision:1619

* Page found: Zustandsvektoren im Hilbertraum (eq math.1619.41)

(force rerendering)

Occurrences on the following pages:

Hash: feee4af2954a5fc4d9bf90b580b93774

TeX (original user input):

\begin{align}
& \left\langle  \Psi  | \Psi  \right\rangle \ge 0:\left\langle  \Psi  | \Psi  \right\rangle =0\to \left| \Psi  \right\rangle =\left| 0 \right\rangle  \\
& \left\langle  \Psi  | {{\Psi }_{1}}+{{\Psi }_{2}} \right\rangle =\left\langle  \Psi  | {{\Psi }_{1}} \right\rangle +\left\langle  \Psi  | {{\Psi }_{2}} \right\rangle  \\
& \left\langle  {{\Psi }_{1}} | \alpha {{\Psi }_{2}} \right\rangle =\alpha \left\langle  {{\Psi }_{1}} | {{\Psi }_{2}} \right\rangle  \\
& \left\langle  {{\Psi }_{1}} | {{\Psi }_{2}} \right\rangle =\left\langle  {{\Psi }_{2}} | {{\Psi }_{1}} \right\rangle * \\
\end{align}

TeX (checked):

{\begin{aligned}&\left\langle \Psi |\Psi \right\rangle \geq 0:\left\langle \Psi |\Psi \right\rangle =0\to \left|\Psi \right\rangle =\left|0\right\rangle \\&\left\langle \Psi |{{\Psi }_{1}}+{{\Psi }_{2}}\right\rangle =\left\langle \Psi |{{\Psi }_{1}}\right\rangle +\left\langle \Psi |{{\Psi }_{2}}\right\rangle \\&\left\langle {{\Psi }_{1}}|\alpha {{\Psi }_{2}}\right\rangle =\alpha \left\langle {{\Psi }_{1}}|{{\Psi }_{2}}\right\rangle \\&\left\langle {{\Psi }_{1}}|{{\Psi }_{2}}\right\rangle =\left\langle {{\Psi }_{2}}|{{\Psi }_{1}}\right\rangle *\\\end{aligned}}

LaTeXML (experimentell; verwendet MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimentell; keine Bilder) rendering

MathML (3.593 KB / 441 B) :

Ψ|Ψ0:Ψ|Ψ=0|Ψ=|0Ψ|Ψ1+Ψ2=Ψ|Ψ1+Ψ|Ψ2Ψ1|αΨ2=αΨ1|Ψ2Ψ1|Ψ2=Ψ2|Ψ1*
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><mn>0</mn><mi>:</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mn>0</mn><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>+</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><mi>&#x03B1;</mi><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi>&#x03B1;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>*</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustandsvektoren im Hilbertraum page

Identifiers

  • Ψ
  • Ψ
  • Ψ
  • Ψ
  • Ψ
  • Ψ
  • Ψ1
  • Ψ2
  • Ψ
  • Ψ1
  • Ψ
  • Ψ2
  • Ψ1
  • α
  • Ψ2
  • α
  • Ψ1
  • Ψ2
  • Ψ1
  • Ψ2
  • Ψ2
  • Ψ1

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results